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Abstract

Dr. Lauterburg published the rst NMR imagein 1973. The door of non-
invasive human body investigation was opened. An other miracle of science.
Since, fast sequenceshave been designed, new scannershave been build,
artifact correction algorithms have beenwritten allowing for today 9T all-
body scanners,functional mapping of the brain, virtual endoscop, tumor
tracking or surgery planing. However, a number of factors are still limiting
the performancesof the NMR scanners.

Through the recall of the principle of NMR, this text tries to highlight
the e ect of the inhomogeneily of the main static eld on the nal image.
Its particular e ect onthe phasealongwith the useof gradiernt edho imaging
is explained. The technique of phasedisplay therefore naturally arise as a
method for eld mapping.

Armed with a map of the inhomogeneity, we proposea new algorithm
for automatic shimming of arbitrary region of interrest under strong inho-
mogeneit. Altough the scope of this work doesn't allow for the validation
of the technique, someresults are preseried, demonstrating the possibility
of cortroling the eld and outlining the remaining problems.

keywords: NMR, BO, eld mapping, phasedisplay, shimming.
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INTR ODUCTION

If someonetells you that he studied quartic physic, supraconductivity, mag-
nets, design of antennas, resonance,modulation, RF waves, electromag-
netism, calculation of eld, signal and image processingyou will probably
think you are speaking to an engeneeror a physicist. Maybe you are are
right or maybe you are speaking to a specialist of magnetic resonance. In
e ect, for anyonewishing to understand what is behind the simpliest image
obtained with an NMR scanner,the understanding of all thesephenomenons
is required.

Which other technique brings all theseprinciples to play together in such
an elegarn fashion ?

Which other device, that can be built with a simple magnet and a coil
allows you to witness a quartic phenomenon?

For sure, the magnetic resonanceis a beautifull subject and this work
will try to uncover a part of it. In this role, chapter 1 will be the main actor,
explaining the fundamenal of NMR. Chapter 2, speaking about reconstruc-
tion, is nothing elsethan the end of chapter 1 but receivesits own chapter so
that the basicsof digital signal processingcan be recalled at the sametime,
leaving no other choiceto the readerthan to acceptthat everything he knows
about signal processingcan be translated in magnetic resonance. Chapter
3 stands on his own and speaksabout the main magnetic eld, introducing
the "hero' of this story. Chapter 4 explains how it doesn't work. The limits
of our hero are outlined, motivating the following chapter, chapter 5, which
explains the attempt of homogeneizationof the main static eld.

As we will see,the impact of the inhomogeneily of the eld is signi cant
in NMR. For someapplication, it is the limiting factor and this problem has
to be tackled. A lot of methods already exist and somewill be described
here. One of them, customizedfor this work, will allow usto make our own
step in the direction of the homogeneizationof the eld. A stepin a long
journey ...



Chapter 1

PRINCIPLES OF MRI

1.1 Intro duction

Nowaday, a number of tomographic imaging modalities are available for
medical and nonmedical uses. A partial list includes X-ray CT (computer
tomography), MRI (Magnetic Resonancelmaging), PET (position emis-
siontomography), SPECT (Single photon emissioncomputed tomography),
MEG (magnetoencephalograply), SAR (Synthetic aperture radar) and var-
ious acoustic systems.

This chapter is intended to describe the principles of MRI and more
speci cally how an MR signal can be generated,detected, manipulated and
processednto an image.

This text follows in a large extend the excellert book from ZHI-PHEI
ZIANG and PAUL C. LAUTERBUR, \Principles of Magnetic Resonance
Imaging” [1]. We will rst cover the basic physical principles for signal
generationand detection. In other words, we will explain how the following
transform are achieved :

1 M My ! S@)! SK)! 1(x)

Where the di eren ts symbols will hopefully becomeclear aswe will progress
through the text.

1.2 Signal generation

As we will see, MRI relies on Nuclear Magnetic Resonance(NMR) and
threfore dealswith quantics e ects. Fortunately, aswe considerthe collective
behavior of a huge number of nuclei we can use a macroscopicdescription
of this phenomenom.
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Figure 1.1: Macroscopicrepresettation of the magnetic moment vector.

1.2.1 Angular momentum and nuclear magnetic moment

A fundamertal property of a nucleusis its angular momertum J ( nonzero
for odd atomic number and odd massnumber) or SPIN 1. In the classical
vector model, spin is visualized asa physical rotation (see g. 1.1). A proton
beingcharged(  10'° coulomb ), the rotation givesrise to a magnetic eld
around it, called nuclear magnetic dipole moment and is represened by a
vector quantity —.

The spin angular momertum and the magnetic momert vector are re-
lated by

-—=J (1.1)

where is a physical constart (nucleusdependart) known as gyromagnetic
ratio

1.2.2 Activ ation of macroscopic magnetism

Althought the magnitude of — is completely determined under any conditions
and is related to the spin number as follows

4
—= h 1(1+1) (1.2)
| is the spin quantum number and cantakethe vallues|=0, 3,1,3,2,
depending on the massand charge number.

its phaseis completely random due to thermal motion. Therefore, at thermal
equilibrium, no net magnetic eld exists around a macroscopicobject.

Supposenow that our object is exposedto a strong external magnetic
eld Bo. We supposethat By is aligned with the z-axis sud that

§0 = BoR

1In MRI, an ensenble of nuclei of the sametype presert in an object being imaged is
referred to as a (nuclear) spin system.
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Figure 1.2: Precessionof the SPIN around the direction of the magnetic eld.

whereKk is the unit vector aligned with the z-axis (see g. 1.2).

We expect ~ to get aligned with B. However, due to quartic e ect, —
will untertake a precessionmovemert around the z-axis (around B ) called
nuclear precession. This precessioncan be caracterized by its angular fre-
quency

Wwo = By (13)

known as Larmor frequency and is of capital importance in MRI. Its direc-
tion of rotation is given by the left hand-rule. As shovn on g.1.2

1.2.3 Bulk magnetization

An other important caracteristic of — in the presenceof external applied
magnetic eld By is its direction. — can be either parallel with B (spin-up)
or antiparallel (spin-down). It can be shown that the spin-up state with
the lower energy (more stable) is slightly more likely than the spin-down
state. the population di erence betweenthe two spin states generatesan
observablemacrosmpic magnetization M 2.

If we let =, be the magnetic momert of the nth nuclear spin then,

M= (1.4)

where N is the total number of spinsin the object to beimaged. The phase
of eah —, being random, M has no transversecomponert.(see g. 1.3)

2To seehow the bulk magnetization is intrinsically related to quantic physic and energy
levels see[2]
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Figure 1.3: Macroscopicrepresertation of the magnetic moment vector.

1.2.4 Resonance and RF Exitation

As we've just seen,the transverse componert of M is zero at equilibrium
becausethe precessingmagnetic momenrts have random phases. Establish-
ment of a phasecoherence among theserandomly precessingspin is referred
to as resonane.

To achieve this condition we apply an external force by way of an oscil-
lating magnetic eld (the RF pulse) denoted B 1(t).

A common resonancecondition basedon classical physic is that B (t)
rotates in the samemanner asthe precessingspins.
We will assumethat B is of the form :

B1(t) = Bi(t)cos(Wrt+ ' ) sin(wyrt+ ' )j] (1.5)
where

§i(t) . pulse ervelope function 3
Wr¢ . excitation carrier frequency
' :initial phaseangle

Which is a circularly polarize wave* Note alsothat B is typically much
more weaker than By.

3equivalent to the well-known complex enveloppe in telecommunication

4This el could also be obtained with a linearly polarize wave along the x-axis as
a linearly polarized wave can be decoposedinto a left-hand and a right-hand circularly
polarized wave.
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Figure 1.4: The movemert of the magnetization is more corveniertly de-

scibed in a rotating frame x'y'z'".

We will alsoadopt the following complex notation :

Bi(t) = Bux(t) + iBy(t) = Bf()e ™' (1.6)
Bix = BI(t) cogwit) (1.7)
By =  BI(t)sin(wt) (1.8)

where' hasbeensetto zeroasit hasno signi cant e ect on the excitation
result.

Wr¢ Is constart and is determined by the resonancecondition (w,¢ = wq for
an isochromat spin system). B £(t) uniquely speci es the shape and duration
of the RF pulse and often givesthe name of the pulse, as for exemple:
Rectangular pulse® :

t

Nl

Y
BE(t) = Bs
sinc pulse :

BE(t) = Bisinc( fu(t ) 0 t P
0 otherwise

To describe the RF pulse and its excitation e ect, we use a rotating
frame of reference whosetransverseplaneis rotating clockwise at an angular
frequency w in the stationary (laboratory) frame. We usex'y' and z' to
denote the three orthogonal axesof this frame asshovn on g 1.4.

We now look into the e ects of an RF pulse on the bulk magnetization
M during the excitation.

It can be shawvn, provided that we are on-resonancé and that the exci-

SNote that throughout this text Q denotes a rectangular function de ned as
Q, . 1 if jxj<1=2

) = 0 otherwise

6A spin system is said to be on resonanceif it has a single isochromat resonating at
Wo = Byo. The system could be o -resonance due to magnetic eld inhomogeneities or
chemical shift
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A M(t)

Figure 1.5: Right : the bulk magnetization (M) describe a circle in the
rotating frame. Left : path of the tip of the bulk magnetization vector in
the laboratory frame.

tation time is short compareto the relaxation times (discussedlater) that :

8

2 M%) =0

S MOa(t) = M2sinwit) o t (1.9)
M 9%(t) = M2 cosfit)

under the initial condition Myo(0) = 0; Myo(0) = 0; M 0(0) = 0
Equation 1.9 meansthat the bulk magnetization vector processesbout
the x' axis with angular velocity

Wy = §1

In the laboratory frame equ. 1.9 describesa spiral asit can be seenon the
g. 15
This result is quite intuitiv e asthe e ective eld seenby the spinsin the
rotating frame is Bli_o. It therefore follows from the Larmor relationship.
As a result of the forced precession,the bulk magnetization is tipp ed

away from the z'-axis, creating a measurabletransversecomponert M yo0.

Wecall \ip angle", , the smaller angle betweenM and the z-axis. The
value of at the end of an RF pulseis given by
Z 4

= “wtdt= | BE)dt (1.10)
0 0
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Figure 1.6: Exponertial regrow of the longitunal componant and deca of
the transversecomponent of the magnetization.

If an RF pulse rotates M about the B eld in the rotating frame by
an angle , we call the pulsean -pulse. Somecommonly used pulsesare
»-pulsesan -pulses. It follows from 1.10that, aslong asthe integral of the
ernveloppe B{(t) is constart, My (t) will end-up at the sameplace.

1.2.5 Free precession and relaxation

After a magnetizedspin systemhasbeenpertubed from its thermal equilib-
rium state by an RF pulse, it will, accordingto the laws of thermodynamics,
return to this state provided the external forceis removed and su cien t time
is given.

The relaxation processis caracterized by a longitudinal and transverse
relaxation. Although the mecdanism involved in the relaxation are diverse
and complex the longitudinal relaxation is said to be due to “spin-lattice’
interraction and correspond to the exponertial regrow of the longitudinal
componert of M. The transverserelaxation, dueto a “spin-spin' interraction
corresponds to the exponertial decay of the transverse componert of M
[4]. Thesetwo relaxations are respectively caracterizedby the time constarns
T1 and T2. Their de nition are usual for exponertial functions and can be
seenon g. 1.6. It canbe shown that the analytical expressionof M is :

My, = Myy(0)er2 (1.11)

L

M, = M21 er1)+ MO%rs (1.12)
The valuesof T1 and T2 depend on the tissue composition, structure
and surrounding. For a given spin system, T1 is always longer than T2. As

an example, T1 is about 300to 2000 ms and T2 is about 30 to 150 ms in
biological tissues. T1 canthereforebe 10times longerthan T2. It may seem
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quite illogical astheseconstarts aretrivialy related to the norm of M during
the transient. One hasthereforeto acceptthat jMj is not constart. In fact,
the concept of vector is only a corveniert way to macroscopicalyrepresert
a quantic phenomenon. We reach here the limit of this represenation.

1.3 Signal detection

So far, we have seenhow the magnetic nuclear momertum ( — ) can be
transformed in a bulk magnetization vector ( M ) by placing it in a strong
external magnetic eld and then how it was excited by an RF pulseto give
rise to a transversemeasurabletransversecomponert ( My ).

To detect this componert, the coils used for emissionare often used'.
The Faraday law of induction statesthat time varying magnetic ux through
a conducting loop will induce in the coil an electromagneticforce equal to
the rate of changeof the magnetic ux through the coil.

We know through the principle of reciprocity that an antenna has the
sameproperties usedas a receiver or as an emetter, if we know that a unit
direct current owing through the coil produce a eld B(r) at position r
then the magnetic ux through the coil induced by M (r;t) will be:

4
(t)= B (r):M(r;t)dr (1.13)
object

It canbeshawn, after afew manipulations, that this signalcanbe written
as:

Z
V(t) = _ W(r)jBrxy (r)jiMxy (r;0)je T2 cos[ w(r)t+ e(r) ((r)+ E]dr
object

(1.14)
where B, (r) has beenrewritten in polar form.

B (r) = J.Br;xy(")jei ("

and where ¢(r) is the phaseshift of M induce by the RF pulse.

Equation 1.14 is a basic signal expressionthat explicitly shows the de-
pendanceof a detected voltage signal on the laboratory frame transverse
magnetization M,y (r; 0), the free precessionfrequencyw(r), and the detec-
tion sensitivity of the receiver coil By (r).

the factor cosfw(r)t) in 1.14 shaws that V(t) is oscillating at Larmor
frequency and therefore is a high frequency signal. To avoid trouble with
electronical circuitry, the high frequency dependanceis removed® yielding

"Typically, the antena used for the RF eld is a “birdcage coil'. Extensive information
can be found at http://CNMRR.collmed.psu.edu
8Demodulation of the carrier frequency wo
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Figure 1.7: Quadrature transmission (left) and reception (rigth). By delay-
ing current to coil A whentransmitting, the eld producedby A readesits
peak later than that producedby coil B. The eld therefore rotates.
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VA
Vosa() = (Wot W(r))iBroy (1)iiMxy (r; O)je T2 cos( w(n)t+ o(r) o (r)+ 5)dr
objec
(1.15)
w(r) has beenrewritten asw(r) = wg+ w(r). As wg >> w(r) we can
further simplify the last expression:
z

Vpsd(t) = Wo  JBrxy ()jjMxy (r; O)je T2 cos(  w(rt+ o(r) r(r)+ E)dr
object

(1.16)

In modern MRI equipmert, a quadrature detection scheme(see g. 1.7)

is usedallowing us to determine either the isochromat was precessingclock-
wise or counter-clockwise (phase-sensitie detection). It follows from the
previously establishedexpressionthat the output of the seconddetector is

Y4
Vosd(t) = Wo  jBray (NiiMyy (r;0)je T2sin( w(r)t+ o(r) (r)+ 5)dr
object 2

(1.17)
The two output of such a systemare often put in a complexform. Specif-
ically, let S(t) = Sr(t) + IS (t), then
Z

S(t) = wo jBrxy (N)jiMyy (r; 0)je Tze L WOt o+ () zlgr (1.18)
object

Invoking the earlier-establishedcomplex notation that

( .
Brixy = Brx* iBry
we have
Brixy(r)ie b = Brixy (1) (1.19)
Mxy (r; 0)je! =)= My (r; 0) (1.20)
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the signal expressionbecomes(neglecting the T2 relaxation)
S(t) = woe'2 By (NMyy (r;0)e T W"tar (1.21)
object '

The scaling constart woe'z is often omitted and the receiver coil is as-
sumedto have a homogeneougeception eld in the region of interrest.
The detected signal nally becomes
Z

S(t) = Myy (r;0)e ' W(Dtgr (1.22)
object

1.4 Signal caracteristic

In this section we examine the time behavior of the received signal after
a spin system has been excited by an RF pulse. We examine two very
important categories: RF edoe and gradient eco.

1.4.1 RF echo or SPIN echo (SE)

Following our discution about relaxation, we expect the detected signal to
have an exponertialy decaing behavior.One could expect that this expo-
nertial is described by the time constart T2. This is not the case.

In e ect, if we considerthe result of an 5 pulse on a spin system with
multiple isochromats, we can seethe respective bulk vectors as rotating
vectorsin the transverseplane. If we considera discrete set of isochromats

After atime ead vectori will havea phasedi erence (w; w) with respect
to the rst vector. The sum of all this non-in-phasevector will produce a
loss of the magnitude of the transverse componert of M. Therefore, the
obsened decgy of the measuredsignal will always be faster than T2 (or
equal in the caseof a single isochromat). We use T2 to caracterize the
e ectiv e decy.

Let's now considerwhat happenif we usethe following excitation scheme

90 180

wich meansthat we apply a §-pulse1°, we wait seconds( < T2) and we
apply a -pulse.

After having applying the 5-pulse, we will have the di erent isochromats
alignedwith x'. If wewait secondswe seethe faster onestaking the head,
that is, we assistto a decay caracterizedby T2 . After secondsthe signal
is lost but we know that a transverse componert still exists. If we apply

the samee ect is produced in the presenceof inhomogeneity
0we assumethat the duration of the pulse is null,that is, we only consider its e ect
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the -pulse, we reversethe order of the “running spins' (the rst becomes
the last). It will then take secondsto the faster spin to catch up with the

slowliest one. Att = 2 wethereforeassistto the refocusing of the spin. This

excitemernt schemeis called a two-pulsesecho and its principles are explain

on g 1.8. The symmetrical shape of the edo is of primal importance as
we'll seelater. The idea can be extended and di erent echo sequencegan
be generatedasfor examplea three-pulsesecho or a spin-echotrain (CPMG

edo train).

On g. 1.8 the norm of Moo is constart. In practice, the signal is
weigthed by T2 (seeequ. 1.11) asit can be seenon g. 1.9 From the
discussionabove, it is clear that the more isochromats we have the smaller
T,. Dierent isochromats ariseif di erent SPIN systemexist (di eren t types
of proton with di erent gyromagneticratios) or if the protons have di erent
caracteristics (see4.1.3for the chemical shift e ect).

What is more important for usis the situation of o -resonance obtained
becauseof inhomogeneily. In practice and for di erent reasons(see chap.
4.1 and 3) Bg won't be constart. For this reason,the di erent spins com-
posingthe bulk magnetization M will oscillate at a di erent frequency If an
inhomogeneiy B (X;y;z) existsat point (x,y,z) ead spin at position (X,y,z)
will oscillate at frequency(Bo+ B(X;Yy;z)) .

In the rotating frame, the phasedi erence after a time will be (sup-
posingthat we take a reference):

(X y;2) = B(XY;2) (1.23)

We will comebacdk to this relationship in section 1.4.3

1.4.2 Gradient echo
Gradient eld

To introduce the gradient eld, let's considera generalmagnetic eld

where Bg:x; Bgy; Bg;z are function of x,y,z

First of all, we want our gradient eld to be an additive gradiert eld
with respect to Bo and therefore we want it to have only a non-zerocom-
ponert for the k direction. We thus setBgx = Bg,y = 0.1

Secondly we want our gradient eld to be a linear gradient eld in the
G direction, that is to say that we want our eld to be constart within a

1 This is not physically achievable (not a solution of Maxwell's equations) but as By is
very strong, the others components can be ignored.
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Figure 1.8: (a) »-pulse ip M in the xy plane (b) multiple isochromats rotate
at their respective frequency the received signal(the transverse componert
of M) decrease(the phasesadd destructively), this is the FID (c) the -
pulse ip the spinsaround the y-axis. The faster spin becomesthe last (d)
the faster being the last but still the faster, he catch up the slowier, the
processuss reverse,the phaseadd now constructively, the signal regrow (e)
edo-time, the faster has joined the slowier. the phaseis null, the signal is
maximun, we are badk to the begining (f) idem than (b).
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Figure 1.9: Successie ecdhoesweighted by T»
The maximun value of the successie echoesis weighted by T,

plane perpendicular to G but to linearly increaseas we progressin the G
direction. We therefore impose:

_ @BG;Z-—+ @BG;Z-—+ @G;z—

r Bgz = I k=G 1.24
G;z @ @ J @ ( )
The solution of this equation is trivial and yield

which can be written as (the denotesthe scalar product)
Be:=G 1T T1=(XY;2) (1.26)

Our gradient eld then becomesBg = Bg k= (G Nk
With this understanding, the overall magnetic eld in the presenceof a
gradiert eld in the region of interest can be expressedas

Formation of gradient echoes(GRE)

Let's now considerthe application of an -pulse (a gradient echo is often
usedin combinaison with small ip angle excitation for fast imaging) with
a negative x-gradient (corresponding to G = (Gy; 0; 0)).

The phasein di erent x-position is given by :

z t
(x;t) = . Gyxdt = Gyxt 0 t (1.28)

We have seen,while discussingthe RF-echo, that the enveloppe of the
measuredsignal wasn't described by etz but by et2" becauseof phasedis-
persion. Of course, we still have a phase dispersion here becauseof, say,
the inhomogeneily but we have something like a “secondorder e ect' for
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Figure 1.10: Gradient-echo pulse sequence.

Figure 1.11: E ect of the gradiert on the di erent spins.

the phase dispersion is forced along the x direction. The deca/ will then
be even faster and we can caracteriseit with an other time constart T2
(T2 <T2 <T2).
If we now reversethe gradient, the phaseanglein the rotating frame is
given by
(x;t) = Gyx + Gyx(t ) t 2 (1.29)

We therefore get an echo when (x;t) = 0 asshown on g. 1.10

As the x-gradient is not necessarlythe same for dephasing then for
rephasing, the echo doesn't occur necessarlyat t = 2 .

For a comparison with g. 1.8 where ead rotating spin was coming
from a di erent isochromat, here, ead spin would correspond to a di erent
position along the x-axis(see g. 1.11). O course,this e ect addsto the
e ect mentioned for SE and yield the T, e ect.

1.4.3 Comparison between SE and GRE

Let's considera 1-D isochromat spin system submited to an inhomogeneous
static eld Bgp+ B(x). The phaseat location x and time t is given by (in
the rotating frame)
Zy
(x;t) = . B(x)d = B(Xx)t (1.30)
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Figure 1.12: Evolution of the phasefor SE as a function of time at a given
point Xo.

After atime TE/2 (TE = echo time) the phasealong the x-axis is

TE, _ TE
6 —5)= B (1.31)

At time TE/2, the pulse is applied. The e ect of the pulse is to
invert the phase(see g. 1.8 (c)). After the pulse, the phaseis therefore
given by
(x: TE*

2
After the pulse, the spinswill goon running, rephasingduring TE/2 seconds
and dephasingagain asshowvn on g. 1.12

Therefore, at the edto time, the phaseis null and in a spin-echo, the
received signal doesrit hold any information alout the inhomogeneity at the
echo-time.

Let's now considerthe caseof gradient-echo. As showvn on g. 1.13,let's
considertwo points Xg; X1 along the x axis.

In the rotating frame and after atime TE/2, the phasesat the two points
are given by

) = B(x)% (1.32)

() = Blxo) 5 (1.33)
() = [B()* Guxal (1.34)

After atime TE/2, the gradient is reversedfor TE/2 seconds.Therefore
the phaseat t=TE is given by

(Xo)
(X1)

B(xo)%+ B(xo)%= B (xo)TE (1.35)

[BOw)+ Goxal Sy + [B) Gexal 'y (1.39)
B(x)TE (1.37)
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Figure 1.13: Evolution of the phaseduring a GRE acquisition. Note that
the gradiert is is reversedbut the inhomogeneit is not as opposedto the
SE case.

In conclusionwe can state that the phaseat point x is given by
x)= B(X)TE (1.38)

and therefore, at echo-time, the phaseis proportional to the eld inhomo-
geneity.
Intuitiv ely, this is due to the fact that in SE, the phaseis reversedby the
-pulse whereasin GRE, only the gradient is reversed. The phaseacquired
becauseof inhomogeneily increasesall the time. This is the reasonwhy
GRE is more sensitive to eld inhomogenei than SE.

1.5 Signal localization

So far, we've seenhow we can generate a measurabletransverse magneti-
zation and we've seenthe form that our received signal takes. Clearly our
signal is the sum of “local' signalsfrom all parts of the object. If our object
is heterogeneousve needto be ableto di erenciate the di erent signalsfrom
di erent positions.

There are basically two types of spatial localization method: “selective
excitation' and “spatial encading'. We now discussead of them.

1.5.1 Selectiv e excitation

The most popular and also the simpliest form of selective excitation is the
activation of a single slice. A slice is describe by the following inequality
(seeg. 1.14)

. . S
Js T sOJ>7
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Figure 1.14: Parameters caracterizing a slice of arbitrary orientation.

or if the thicknessof the sliceis null (or can be neglected)

s I'=So

To selectsud a slice, we needa gradient eld and a shaped RF pulse.
In fact, the principle is very easyto understand. Let say we want to activate
the sliceshovn on g. 1.14:

We turn on a gradiert eld in the direction of —5 giving

_s = G
or in term of the slice orientation ( ; )
~s = (sin cos; sin sin; cos )

and the condition on G becomes

8

2 Gy = GgsSin cos
S Gy = Ggssin sin
- G, = GgcCos

Ggs is the gradient eld and could take any non-zerovalue provided that
the eld variation is stronger than the eld inhomogeneity.

Supposethat we want to activate the slice z = zp, the suitable gradient
is Gss = (0;0; G,). Basedon the Larmor relationship, the Larmor frequency
at position z is given by

w(z)

f(2)

Wo+ Gz (1.39)
fo+ Gz = (1.40)

d
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By(1) ;
FT B f A 4

Figure 1.15: Linear mapping from frequencyto z-position.

We therefore have a linear relationship betweenthe position along z and
the Larmor frequency
We now activate the slice with the RF pulse?.Recall that an RF pulse
can be written as
Bi(t) = BS(t)e Wrrt (1.41)

It is well known that the Fourier transform revealsthe spectral content
of a signal. Therefore, by taking the Fourier transform of the RF pulse we
get a relationship betweenthe frequency and the weight of this frequency
in the pulse. This weight can be directly mapped'® onto the the z-position
with equation 1.39asshowvn on g 1.15

More strictly, let's write our desired spatial selectionas follows :

Y z z9 1if jz zgj< £

Ps(2) = z 0 otherwise (1.42)

According to 1.39the desiredfrequency selectionis

Y of f
p(f) = : : (1.43)
f = G, z
fC = fO + 7Gzzo
The key assumptionis that B1(f ) is related to p(f) by the Fourier transform,
Z,q _
B1(t) p(f)e 2 Ttdt (1.44)
1
Making use of the well known relationship
sinc(a) 8 S L (1.45)
a a '

12 pulse which selectively activate the dierent isochromats of an object is called a
soft pulse (becausesmoother) while a non-selective pulse is called hard pulse

B This method is not strictly correct becausea spin system doesn't behave linearly
during excitation. A more accurate approach usesthe Bloch equation.
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we get
BE(t) = Asinc(  ft) (1.46)

asthe pulse ernveloppe asto be causal
B§(t)= Asinc[ f(t 2)] o0 t (1.47)

neglecting, for now, the truncation e ect

Y .

p(f) — f ffc e|2 (f fc)Tp (148)
Y .

ps(z) = z % ZZO g G:z 207 (1.49)

Practicle consideration

As it can be seenin equation 1.48, a linear phase shift is introduced
during the slice selection. As this phase shift introduce a signal loss, it
is removed by applying a refocussing z-gradiert. This procedureis called
post-excitation rephasing

The refocusing gradiert is caracterized by its strength G,.; and by its
duration . As an example,if we set , = 5, Gr;; must be setto Gy;; =

G;.

An other consideration is the truncation e ect. This problem is similar
to the Iter design. If wetruncate our desiredfunction in time, weintroduce
someripples in the frequency domain end a nite slope to the edges. To
handle this situation some more suitable pulses have been design such as
the gaussianpulse with lesssidelobesand sharper edges.

1.5.2 Spatial information encoding

Spatial information encading consistin making a measurablevariable depen-
dent on the position. As the variable we measureis in the form of a complex
exponertial, localization can be either phase-encded or frequency-encaled.
We now describe successiely thesetwo methods.

Frequencyencading

Consider rst oneidealizedone-dimensionalobject with spin distribution
(x). In the presenceof a linear gradient eld, the Larmor frequency at

position x is
w(X) = wo+ GyX (1.50)

Correspondingly, the FID signal generatedlocally is

dS(x; t) (x)dxe " (BotGxx)t (1.51)
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The received signal is therefore

VA
S(t) = ds(x; t) (1.52)
object
+1 .
= (x)e | (Bo+GCxXtgy (1.53)
1
241 . .
= (x)e ' SxXtdxe Wot (1.54)

After demodulation (removal of e"ot)

Z +l )
S(t) = (x)e ' GxXtdx (1.55)
1
Generalizing for a 3D object
Z
S(t) = (r)e ' Gretgr (1.56)
object

or in the caseof a spin edo signal
z
S(t) = (r)e ' CreT(t Te)qy (1.57)
object
Howewer, unlikethe 1-dimensionalcase,ead spatial point is not assigned
a unique frequency Setting the Larmor frequencyto be a constart yields

Gie T=¢C (1.58)

which is the equation of a plane perpendicular to G; e. Therefore, spatial
encading is only achieved along the Gs  direction.
It is now straightforward to go one step further and to expressequ. 1.56

in term of Fourier transform.
Z
S(k) = (r)e '2 KTdr (1.59)

object

by making a simple variable substitution

Gt el FI1D signal

k= “Gie(t Tg) echosignal

(1.60)

Phaseencaing

Phaseencaling, in the one-dimensionalcase,is achieved by turning on a
gradient Gy for a short time Ppe. This time, the in nitesimal received signal
is
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ds(x;t) =

i(Bo+GxX)t
(x)dxe :) t Tpe (1.61)

(x)dxe i (Bot+ Gxx)Tpe Tpe

If we only acquire the signal after Tpe, the collected signal will bear an
initial phaseangle

(x) = GxXTpe (1.62)
or, in the generalcase, N
(X) = Gpe TTpe (1.63)
which yield a received signal of the form (after demaodulation)
Z
S(t) = (r)e ! GrerTeeqr (1.64)
object

Again, we expressour received signal in term of a fourier transform
z
S(k) = (r)e 2 KTdr (1.65)
object

where
k = “GpeTpe (1.66)

Basic imaging method

By looking at the equations 1.59 and 1.65 one could think that we are

done. Indeed, one last step would be to invert the fourier transform to get
(.

However, we only accesdo the k-spacethrough the parametric equation
de ned by equations 1.60 and 1.66 respectively for frequency encading and
phaseencaing.

For frequency-encaling and in the 2D case,we get from 1.60

(

. kx = TGyt t O
F1D signal x - 7 (1.67)
ky = ~Gyt
(
echosignal k, = Gyt Te) (1.68)

Equation 1.67 describesa segmen starting at (0,0) in the k-spacewhile
equ. 1.68is symmetrical asillustrated on g 1.16.

If we rewrite Gx = Gcos , and Gy = Gsin j, the angle betweenthe
segmen and the ky-axis is givenby . It is now easyto seehow one can
scanthe entire plane by varying . This will result in a polar sampling of
k-space.

Two dimensional imaging
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kx k.l'

(a) (b)

Figure 1.16: k-spacesampling trajectories of (a) a frequency-encaed FID
signal, and (b) a frequency-encaed eco.

o slll T .
_— 5 é =

Ty e —

Figure 1.17: Excitation sequencedor generating a frequency-encaled (a)
FID signal (b) gradient-echo signal (¢) spin-edo signal.

—F

Figure 1.18: Example of a sequenceusedfor two-dimensionalimaging. The
signal is frequency encaled along the x direction and phaseencaded along
the y direction.
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Figure 1.19: K-space coverage of the imaging sequencein g. 1.18. (a)
k-spacetrajectory during a cycle (b) k-spacecoverageby all the sequence

Let's now analyseanother basicimaging schemeshowvn in g. 1.18. Each
spin-edo is rst phase-encded along the y-direction and then acquired in
the presenceof a frequency-encaling gradient Gy.

To understand how k-spaceis travesedby this imaging scheme, consider
the nth excitation. During the phase-encding interval, we have

(
Kx

Ky

_Gx(t tO)
n Gy(t to)

T
to< t< to+ % (1.69)

which represetts a radial line from the origin to point A de ned by

The subsequen 180 pulse swingsthe trajectory to point B,as shovn on g.
1.19
ks = Kka (171)

During the subsequeh data acquisition interval, we have

( kx = “G(t Tg)

. . Tacq
< == :
ky = N GyTpe it Tej (1.72)
which is a horizontal line parallel to the ky-axis., whoseinterception on
ky-axis is "n  GyTpe. Therefore, by varying the phase-encding strengh,
ead line will assumedi erent ky locations resulting in the rectilinear sam-
pling of k-space.

Three dimensional imaging

For true three dimensionalimaging, non-selectiwe pulsesare usedfor sig-
nal generationand information along the three dimensionsmust be encaled
into the activated signal.
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Howewer, a common way to accomplish three dimensional imaging is
by using slice-selectie excitations for localization in the third dimension,
leaving the other two to be donewith encaling methods.

1.5.3 Two dimensional imaging under B, inhomogeneit y

Taking a general expressionof the received signal we have

Z
S(t) = (x; y)e WO Ml gxdy (1.73)
object
w(x) = [Gxx+ Bo]
(y) = [Gyy+ Bo]Tp

Adding the e ect of the inhomogeneily and after demodulation

w(x) [Gxx + B(X;¥)] 2.74)
(y) = [Gy+ BXYITp (1.75)

Let's rst considerthe e ect of the inhomogeneiy on the phase. The
signal, expressedn k-spacewill be
Y4

S(t) = (x;y)e BOWTeig 12 (kxtkyy) gydy (1.76)

object

After reconstruction, we will then recover a complex signal

Ly) = (xy)e B0l (1.77)
ey = (xy) (1.78)
arg(l (x;y)) = B(x;y)Tp (1.79)

The phaseof our reconstructed signal (which would be real in absence
of all kind of inhomogeneil) is proportional to the inhomogeneiy of the
static eld 1#

Howevwer, recalling section 1.4.3 we know that we must be carefull. In
e ect, for SE signal, the phaseis NOT proportional to the inhomogeneity,
we even saw that it was zero at echo-time! Therefore, we can state that for
a SE sequencethe phaseis not in uence by the inhomogeneit.

Let's now consider the e ect of the inhomogeneiy on the frequency
Due to the presenceof the term “xt', the exponertial cannot be split and

the e ect is more di cult to understand. The signal takesthe form
4

S(t) = (x;y)e i[(Gxx+ B(xy)t)+ nyTp]dXdy (1.80)

object

More generally, the phaseof the signal would be proportional to any signal modulating
the phaseof the encaded signal (the magnetization). In particular, the phaseis related to
the motion of the object
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ke = TGk + = ket S0

ky = T[GyTp]

S(t) = (x;y)e 12 ax*tkyY) gydy (1.81)
object

Although we are no more in presenceof a fourier transform we cantry to
explain the e ect in term of the k-spacetrajectory. In e ect, when we take
asample,we beleive that it comesfrom (ky; ky) whenit comesfrom (K, ; ky).
The grid in the k-spaceis therefore distorded (producing a distorsion of the
image). An other e ect appearsif the relationship betweenky and k, is no
more a bijection. In this case,many points can be mapped onto the same
k-spacepoint producing an intensity modulation of the image.

From the discussionabove, it is easyto draw conclusionsfor GRE image.
The image will be distorded and submitted to intensity modulation. These
phenomenonswill be worsein GRE imagesasthe spinsare not refocusedby
the -pulse. Another e ect of eld inhomogeneil is a signal lost. In e ect,
the inhomogeneily increasesthe phasedispersion and the signal sisapears
more quickly. The inhomogeneily can be such as the signal can't even be
measured,resulting in typical black hole in the image.

Last but not least, gradient echo imaging openthe door of eld mapping.
In e ect, we have shown that the phaseimage is proportional to the eld
inhomogeneil. More precisely

arg(l (x;y)) = B(x;y)TE (1.82)

Therefore, the phaseimage is proportional at each point to the eld in-
homageneity!®.

As we know that the function "atan' usedto calculate the phaseof a
complexyields aresult between 5 and > we deducethat the inhomogeneit/
must be smaller than

J B(Xy;2)] STE (1.83)

2:9710 7 [T] (1.84)

taking an edo-time of 0:02 [s] and a gyromagnetic ratio (for hydrogen) of
4258X 2 [MHz=T]. This value can be quite small in a situation of bad
shimming.

15 Seesection 4.3 for more details about eld ploting
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IMA GE
RECONSTR UCTION

Recalling equ. 1.59and 1.65we obviously notice that we will soon deal with

fourier transform. Therefore, the next sectionis dewted to put DTFT and

FFT bad in place before explaining the last step : S(ky;ky) ! 1(X;y).
The problem of reconstruction is further explainedin section5.1.

2.1 Discrete Time Fourier Transform

211 DTFT

Denoting H(f) the frequency represenation of h(t), we can start with the
well known “fourier trasnform' equations

H (f) h(t)e 2 " tdt (2.1)

h(t) H(f)e? Tid (2.2)

1
1%+1
2

If t is measuredin seconds,then f is in cycles per seconds,or hertz.
Howewer, the equationswork with other units. If h is a function of position
x (in meters), H will be a function of inversewavelength (cycle per meter).
In the most common situation, function h(t) is sampled (that is to say its
value is recorded) at evenly spacedintervals in time asshowvn on g. 2.1

We can seeon this gure that sampling in time induce a periodization
in frequency To avoid overlap of the repeated spectrums (aliasing) the
“sampling theorem' or "Nyquist theorem' must be satis ed. That is to say

fs  2fmax (2-3)

27
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Figure 2.1: DTFT of a real, bandlimited function, sampled exactely at twice its
maximun frequency (fs =2fmax). Note that sampling induces periodization.
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wheref g is the sampling rate and f ,,ax the maximun frequency componert
preseris in the spectrum of h(t). If this theorem is satis ed, h(t) can be
recovered ertirely by the formula

XL sin@ fgt n))
h(t) = hn
(1) . ©

(2.4)

We now estimate the fourier transform of a function from a nite number
of its sampledpoints. Supposethat we have N consecutive sampledvalues

he = h(ty); tk=k ; k=012:5N 1 (2.5)

so that the sampling interval is . To make things simpler, let us also
supposethat N is even. If the function h(t) is non-zeroonly in a nite

interval of time, then that wholeinterval of time is supposedto be contained
in the range of the N points given. Alternativ ely, if the function h(t) goes
on forever, then the sampledpoints are supposedto be at least\t ypical" of
what h(t) looks like at all other times.

With N number of input, we will evidertly be able to produce no more
than N independen numbers of output. So, instead of trying to estimate
the Fourier transform H(f) at all valuesof f in the range f. to f, let us
seekestimatesonly at the discrete values

fn= ;on= —un— (2.6)

The extreme values of n in 2.6 correspond exactly to the lower and upper
limits of the Nyquist critical frequencyrange. You may have noticed that
there are N+1, not N valuesofnin 2.6. It will turn out that the two extreme
valuesof n are not independert (there are equal), but all the other are. This
reducesthe court to N.

The remaining step is to approximate the integral in 2.1 by a discrete
sum

Zy1 _ 1 N 1 .
Hif) = h(©e* Tridt= hee? e = he® 'V (2.7)
k=0 k=0

The nal equation summation in equation 2.7 is called discrete Fourier
tranform of the N points hy. Let us denoteit by Hy,

y .
Ho=  he® v (2.8)
k=0

The discrete Fourier transform maps N complex numbers (the hy's) into
N complex numbers (the H,'s). It does not depend on any dimensional
parameter, such asthe time scale . The relation 2.7 betweenthe discrete
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Fourier transform of a set of number and their contin uous function sampled
at an interval  can be rewritten as

H(fn)= Hnp (2.9)

wheref, is given by 2.6
If we de ne de ne W asthe complex number

W = i (2.10)
we can re-write 2.7 as

X
Hp = W™ hy (2.11)
k=0
Taking the DTFT is therefore equivalent to smple the fourier transform
at N evenly spacedpoints on the circle.
The formula for the discrete inverse Fourier transform, which recovers
the set of hy's exactely from the Hy's is:

he = —  Hpe 2'% (2.12)
N n=0

2.2 Reconstruction from fourier transform sam-
ples

We have seenin chapter 1 that the received signal was encaded in the form
of a fourier transform. Furthermore, we know that this signal is sampled
uniformly yielding (one dimensional case)
Z., '
S(kn) = . | (x)e "2 KnXdx (2.13)

This is therefore the DTFT of the image. Is the Nyquist theorem (eq. 2.3)
satised ? To answer this question, we have to notice that we face the
inverse problem. We samplein the k-space(frequency domain). However,
eg. 2.1 being symmetric, we can use the result from section 2.1.1. That
is to say that we have to sample (in the k-space) at twice the maximun
“frequency'. The term frequency refers here to the maximun point x after
which the signal (the image) is null. In practice, it will always be the case
asany image will be support-limited. That is, there existsa nite Wy such
that

I(x)=0 jxj> % (2.14)

where the region de ned by jxj < Wx=2 is referred to asthe eld of view
(FOV).Therefore, the condition we are looking for can be written as

1 1
Wy < — or k < Wo (2.15)

X
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With this condition in our head can we now blindly apply eq. 2.12
and recover I(xX) ? Not yet. Remenber that with N points we will be
able to reconstruct only N points. Now, if we take the problem in the usual
direction, that would require that the maximun frequencyof the imagealong
the x direction is smallerthan half the sampling frequency(N=Wy). Nothing
is lesssurethat the imageis band-limited (its spectrum is band-limited). In
e ect, any sharp edgein the image will have a non-bandlimited spectrum.

A little bit morerigorously, we canrewrite the problem of reconstruction
with nite sampling as

1
1(x)= K S(n)e2 " k+ chel2 M kx (2.16)

N N
2 2

=

>

— N .
n= n< ?,n

It can be shown that if we setc, to zero, the norm of the image will be
minimun. This is what is donein practice and it is equivalent to dropping
the high frequencies.This will leadto the Gibbs ringing artifact (seesection
4.1.1).



Chapter 3

MA GNETS AND
MA GNETIC FIELDS

3.1 Concerning magnets

The magnets used for biomedical magnetic resonancepurposestend to be
expensive, high technology items which require considerable care in han-
dling, both from the point of view of personal safety and also with regard
to the equipmert.

Becausethe forces on a ferromagnetic object (including one inside a
patient) vary asthe inversefourth power of distance from the magnet, they
can changefrom being negligible to overpowering in just a few steps.

Let's now look at someof the speci cations of a magnet. The relevant
caracteristics are . the strengh, the size, the requiremerts of stability and
homogeneiy over a specied volume and the ability to generateany eld
gradients. Thesefactors interact considerably the extent depending on the
type of magnet employed : permanert, resistive or superconducting.

Permanert magnetsare build of blocks of magnetic material, for exam-
ple, samarium-cobalt compounds, ferrites or iron-rare-earth combinations.
They can generateup to 0.3T over volumesof many liters. Permanert mag-
nets for medical magnetic resonanceuse are uncommon as, to ensure eld
stability, temperature cortrol to typically 1 millidegree is needed. Which,
over a device large enough to hold a human is not feasible. Of course,
the main attribute of a permanert magnet is that they require negligible
power. For this reason, permanert magnetsare usedin country with lim-
ited ressources.

By cortrast, resistive magnets (up to about 0.15T) can consumeup to
60kW of electrical power, and of course,that power ( dissipated) hasto be
removed by an impressive supply of cooling water *

A ow of 1 liter per secondwould su er a temperature rise of nearly 15 degrees

32
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Figure 3.1: The use of superconducting switch. When a small current i passes
through the heater, the superconducting wire (the 'switch’) next to the latter be-

comesresistive and so, asthe magnet hasno resistance,all the main current | even-

tually ows therein. Oncethe desiredcurrent | has beenestablished,the heater is

turned o, and the 'switch' resumesits superconducting state. Thus the magnetis

short circuited, and no inductiv e voltage can develop acrossit asthe power supply

current | is now decreasedto zero slowly. Thus the full curent must corntinue to

ow in the magnet, but in a closedloop via the the switch rather than through the

power supply.

Superconducting magnetsrepresen the majority of manufactured mag-
nets, for, apart from their price, they possesthe advantages of very high
eld (up to 10T) and excellert stability. A few metals, considerably more
alloys (for example, niobium-titanium and niobium-tin) and certain ceram-
ics exhibit the property of superconducting. At room temperature all known
metals and alloys possesresistance. However, at su cien tly low tempera-
ture, superconductorscompletely losetheir resistance(provided they are not
in a magnetic eld). Thus, a superconducting magnet is made by immers-
ing a large coil of, say, niobium-titanium alloy wire in liquid helium (4.2K).
Current is then put into the coil to generatethe magnetic eld and, asthe
wire has no resistance, no heat is generated and the liquid is not rapidly
boiled o .

In order to put the current into the coil, the power supply is connected
to the magnet and, over a spaceof typically an hour or two, the instrument
is wound up, the current is increasedto the desiredvalue. At this point, as
shown in gure 3.1, a superconducting 'switch' is closed.

A ‘'switch' is simply a length of superconducting wire with a heater
wrapped around it. During ‘'wind up', the switch, being 'warm’, was re-
sistive, and sothe current passedinto the zero-resistancemagnet. Nothing
changeswhen the switch is openedfor there is no voltage acrossthe magnet
to set current owing through the switch. Howewer, when we commence
'‘winding down', a voltage is developed in the magnetasthe current through
it starts to change (self induction). Current immediately o ws through the
switch and, by the time the power supply has beenwound down to zero,
the full current is owing in a closedloop through the magnet and switch.
The power supply is now removed and after a settling period the magnetis
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stable to better then 0.1 PPM.

3.2 Homogeneit y and eld correction

3.2.1 Intro duction

Imaging experiment demands a linear relationship between distance and
frequency However when a magnetis rst installed, it is very unlikely that
su cien t precision is obtained. Over the volume of interest, say a human
head,the eld strenght may well vary by 100PPM 2 or more. Somerational
and easily implemented method of correcting this inhomogeneily is thus
required. A map of the eld is obtained by way of a small NMR sample 3.
or by somecorrecting coil or induced by the main magnetic eld magnetic
piecesof metal strategicaly placed around the magnet. This operation is
done at the installation of the machine and can be repeated periodically as
the magnet can drift in time.

Another way of correcting the eld is referred to as 'shimming'. The
presencein the eld of the body to be imaged induce a distortion of the
eld 4. Thereforethe current owing in the correcting coils (shimming coils)
are calculated before the acquisition . Typically, the current is calculated
to maximise the enveloppe of the received FID signal. As we saw in the
chapter 1, the FID signal is caracterizedby a T2* exponertial deca, T2*
depending on the inhomogeneil. Therefore, the shimming processtries to
obtain a pure exponertial decay with a T2* as long as possible. We note
that this technique is global and doesn't needa map of the eld °.

3.2.2 Field correction

In order to gain a better understanding of these concepts,we now look to a
mathematical analysis. If we expressour magnetic eld as

B = Bxi + Byj + B;k (3.1)

wherethe symbols havetheir usualmeaning,we may show, usingthe Maxwell's
equationsin free spaceand without source,that

r°By=r2By=r2B,=0 (3.2)

Making useof the particular distribution of the eld we canneglectBy and
By and we end up with the well known Laplace's equation

r°B,=0 (3.3)

2the required accuracy is in the order of 1 PPM or less.

Stypically 100 | of water doped with CuSo4 or NiCI2 to have a T2 of about 100 ms.
‘Seesection 4.1.3,4.2.1,4.2.2

Sas opposedto the initial correction or to the technique described in 5.3.
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Po() = 1

Pi() =

P2() = %(3 2 1)

Ps( ) = ;(5 3 3)

Ps() = (35 % 302+ 3)

Ps( ) = 2(63 5 703+15)

Pe( ) = £(231° 3154+1052 5)

where = cos

Table 3.1: Legendrefunction.

The solution of Laplace's equation is given in many standard mathematical
texts. We give the results in the form of spherical harmonics

Bz = Com " Pnm(cos()) cosf( nm)) (3.4)

where C,, and ., are constarts, Py, are the assaiated Legendrefunc-
tions, n and m are integers obeying n m 0, n is the order of the
harmonics and m its degree,; ;r aredened on g. 3.2

This equation is usually split in two parts : those for which n is zero
(zonal harmonics) and the others (tesseral harmonics).

Our task now is to devisemeansof producing spherical harmonics elds
sothat we may useour creationsto annul the undesirableinhomogeneities
we have measured. The following sections explain how the homogeneous
eld can be created®

From measured data, deriv e the coecien t Cyy and n of equa-
tion 3.4

Zonal harmonics : Rewritting the zonal harmonics as
Bzonal = Cnr"Pn(cos ) (3.5)

it may quickly be seenwith the help of table 3.2.2that with = 0 (i.e.
along the z-axis, see g. 3.2) that we can write equ. 3.4 as

Bzaie = Co+ C1z+ Cpz?+ i (3.6)

In other words, the unknown coe cien ts Cpg of equ. 3.4 are the coe cien ts
of the Taylor seriesdeveloppemert of the eld alongthe z axis. A few points
can be measuredwith a small probe and the coe cien ts can therefore be
easily computed.

6See[3] section 3.4
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Figure 3.2: Spherical polar coordinates (r; ; ).

Pll( ) = sin
P»i( ) = 3sin cos Px() = 3sin®
Psi( ) = 3sin (5co¢ 1) Pso( ) = 15sin® cos
Ps3( ) = 15sind
Psa( ) = 3sin (7cos$  3cos) Pio() = 2sin? (Tcod 1)
Pas( ) = 1ossin3 cos Paa = 105sin*
Psi( ) = 2sin (2lcos  14cod + 1)
Pso( ) = ths sm2 (3cos$  cos)
Ps3( ) = 185 sin® (9cog 1) Pss( ) = 945sin* cos
Pss( ) = 9453|n5
Per( ) = Z'sin (33co$  30cos + 5cos )
Pea( ) = 105sm (33cost  18cog + 1)
Pes( ) = s sm3 (11co$  3cos)
Pea( ) = 355 sin* (11co¥ 1) Pes = 10395sin® cos
Pes( ) = 10395sm6
where = cos
Table 3.2: Asscciated Legendrefunction.
Tesserals harmonics : In orderto calculatethe coe cien ts of the tesseral
harmonics, let's now rewrite equ. 3.4 in the certral xy-plane. That is, set
(for example) r=5cm, = 5 (z=0) andlet vary from Oto 2 .A tesseral

harmonic becomes
Bmn = Fmn cosm( mn) (3.7)

where Foin = Chn"Pmn (cos ) and is constart under these conditions.
Sphericalharmonics oscillate at frequencieswhich are harmonics of the fun-
damenal (hencetheir name). Therefore, a Fourier analysis would tell us
how much ead harmonic is presert and what is its phase. However, what
we still don't know is from which order these harmonics come from as, for
example,a rst order harmonic is, in generala mixture of B11; B21; Bsj; etc.

We have to go a little bit further. By inspecting table 3.2, we can see
that whene\er the order n is even, the assaiated Legendrefunction is zero
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for
theta = . Therefore, the sphericalharmonic of rst degreecan be rewriten
as

3 15
Bm=1 = Cyar cos( 11) §C31r3cos( 31) + §051I’5C05( 51) + i

(3.8)
which in turn can be rewriten as

1
Bm=1 = cos [(Ci1C0S 11)r (gcﬂcos 3)rs+ (§C51cos s1)r°+ ]+
. . 3 . 15 .
sin [C11Sin 11)r (§C31$In 3)rS+ (§C5ls|n 51)r° + ::1(3.9)

If weremenber that the real part of the Fourier transform is assaiated with
the odd part of the signal (here, the cosineterm) and the imaginary part
with the even (the sine) we can now calculate ead constart by measuring
the eld on a circle for dierent value of r, taking the fourier transform,
measuringhow much a given degreesi presert for ead value of r and tting
the curve to the polynome described (for the rst degree)by equ. 3.9. The
constart can naly be calculated by

Chisin n1
= Atan ———— 3.10
"t Cn1COS n1 (3.10)
Cni = (CBysin? ni+ CZicod n1)? (3.11)

Cancel the measured harmonics

Generation of By : Consider rst the tesseralharmonics produced by
a pertubation, for example, a small piece of steal placed on the inner bore
wall of the magnet at position (f; ; ). This pieceof metal, magnetizedhby
the main led will produce a large memeler of harmonics. However, if we
add the samepieceof metal at position (f; ; ) it canbe shown that the
resulting eld will be

Bn2 = Char"Ppa(cos )[cos2( + Z) + cos2( Z)] =0 (3.12)

In fact, all degree2+ 4k;k N will cancel. By appropriately choosingthe
angle between the two pieces, all the undesired degreescan be cancelled
yielding a pure rst degreespherical harmonic.

A similar strategy is also usedto cancelthe undesirable order. Pieces
of metal are placed in planes parallel to xy and equidistart to the origin,
the symmetry of the systemunsurethe cancellation of the undesirableorder
(see g. 3.3).
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Figure 3.3: With the particular declination showvn ( = 40:1 and 139.9), the eld
created round the origin is essetially the spherical harmonic B ;:

Electrical shim and gradien t coils

As we saw in chapter 1, alinear gradient must be switch onand o during the
imaging process.Although we have just seenhow a B ;1 harmonic (a linear
gradient) could be created, it is not conceiable to switch it dynamiquely.
Sphericalharmonics must therefore be created by current soasto be turned
on in time compatible with NMR requiremert. This is done by loop of
current as showvn on gure 3.4 and 3.5 called shimming coils or gradient
coils’. The ring are used for zonal harmonics while the loop are used for
tesseralharmonics.
More precisely The eld produced along the z axis by a ring of current
is given by
_ ol *» (Z

Bzaxis - ? f)n sin Pn+1;1(COS ) (3-13)

n=0
f is the radius of the ring, o, the permitivit y of free space, is the angle
betweenthe origin and one point of the ring (see g. 3.4). If we now place
an other ring symmetrically about the xy plane, that is to say at an angle
, and if we usethe fact that

Pn+1;1[coq )= ( 1)"Pn+1a(cos ) (3.14)

we understand that the resulting eld won't have any odd order(z; z3; :::).
If we reversethe current in one of the loop we now cancelevery even order.

A complete description of harmonic generationis out of the scope of the
text (seel[3] for more details) but we now understand better how a linear
relationship can be establishedbetween spaceand magnetic eld. We also
note that the relationship betweenthe current and the strength of the order
is linear. We will usethis linear relation in chapter 5.

Telectrical shimming is sometimesrefered to as ambiant temperature shimming as op-
posedto the shimming of the magnet itself which is done at temperature compatible with
supraconductivit y
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Figure 3.4: Some possibilities, among many, for the design of zonal correcting
coils. First-, second-,third- and fourth-order current correction system are shavn
wound on a cylindrical surface.
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Figure 3.5: A design, using arcs of current, for the production of B1;.



Chapter 4

INHOMOGENEITY AND
FIELD MAPPING

After having explain the theory of reconstruction, it is now time to go one
step further and explain its distance from the reality. Fortunately, a lot of
problems (usually called artifacts ) assaiated with RMI are well understood
and methods for eliminating them exist. For the purposeof this text, arti-
facts implying the static eld are explained in a separatedsection. In fact,
they dier from the former becausetheir impact on today imaging is said
to be signicant or even limitating in some cases. They also distinguish
themself by the fact that eliminating them is incredibly di cult.

4.1 Image artifacts

In this chapter common problems assaiated with imagesreconstruction are
outlined. The methods usedto reducetheir e ect are explained.

4.1.1 Gibbs ringing artifact

The Gibbs ringing artifact is a common image distortion that exists in
Fourier images, which manifests itself as spurious ringing around sharp
edges,asillustrated in g 4.1. The maximum undershoot or overshaot of the
spurious ringing is about 9% of the intensity discortinuity and is indepen-
dent of the number data points usedin the reconstruction. The frequency of
oscillation, howeer, increaseas more data points are used. For this reason,
when a large number of data points is usedin practice, the spuriousringing
doesnot cover an appreciabledistancein the reconstructed image and thus
becomes’invisible'.

The Gibbs ringing artifact is a result of truncating the Fourier series
model owing to nite sampling or missing of high-frequency data. In prac-
tice, Gibbs ringing can occur in both phase-and frequency-encaling direc-

40
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Figure 4.1: Gibbs ringing artifact in Fourier reconstructions. Notice the ringing
pattern as a function of number of data points usedin the reconstruction.

tions, but more often along the phaseencading direction becausetemporal
constraints often limit the amount of high-frequency data collected along
that direction.

An obvious way to reducethe Gibbs ringing artifact is to collect more
high-frequency data. This may not be possiblein practice becauseof prac-
tical physical or temporal constraints on MR data acquisition. Another ap-
proachisto lter the measureddata beforethey are Fourier Transformed[1Q.

4.1.2 Aliasing artifact

As stated by Nyquist theorem (equ. 2.3), one has to take enough samples
for a signal to be perfectly reconstructed. As illustated on g. 4.2(a), the
non-respect of this condition leadsto an overlap of the spectrums (compare
to g. 2.1.1). As we already mertion in section 2.1.1 and as shovn on
g. 2.1.1, discretization in one spaceis equivalent to periodization in the
corresponding space.

In 2 dimensions,the periodization is shavn on g. 4.2(b). It is therefore
easyto understand the problem of aliasingin MRI. If the number of samples
acquiredin, say, the frequencyencading direction is too small, the spectrums
will overlap, resulting in a replication of the image in the x-direction as
shovn on g. 4.3(a).

Aliasing artifact is in generaldicult to x after the fact. A common
approac to this problem is to prevent it from happeningin the data acqui-
sition stageby properly choosingthe sampling rate or limiting the measured
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Figure 4.2: (a) Spectrum of an undersampled signal (b) replication in object
domain

Figure 4.3: (a) Aliasing artifact due to undersampling along the horizontal direc-
tion by a factor of two. (b) Chemical shift artifact.
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signal bandwidth through the useof antialiasing ltering (low pass lter).

4.1.3 Chemical shift artifact

The term chemial shift refersto the shift in resonancefrequency of nuclear
spinsin dierent chemical environments. An important examplein MRI is
that the Larmor frequencyof fat protons is shifted to a lower frequencywith
respect to that of water protons by approximately 3.5 ppm. Since spatial
position is frequency-encaled in the readout direction in the imaging pro-
cess,signalsfrom water protons and fat protons in the samespatial location
will be assignedto di erent spatial locations, thus creating a misregistration
artifact asillustrated in g. 4.3(b)

The degreeof spatial displacemer causedby chemical shift can be read-
ily calculated basedon the known experimental parameters. Assume that
the main eld strength is B, the frequency-encdaling gradiernt is G, and the
pixel sizeis x. The frequency shift is

We = Bo (4.2)
where is a shielding constart. Sincethe frequencybandwidth of a pixel is
wy = G X 4.2)

the amount of spatial displacemen, in the unit of a pixel, causedby the

chemical shift is
We _ Bo

4.3
Wy G Xx (4.3)

X —

An e ective way to reducethe chemical shift artifact is therefore to use a
strong readout gradient soasto make the displacement smallerthan a pixel.

4.2 Field inhomogeneit y
4.2.1 B, inhomogeneit y

By now, it should be clear that the inhomogeneity of the main static eld
will produce a mislocalization of the pixels (which can produce amplitude
modulation) and will therefore distort the image.

Although the causeis exactly the same,we have to considertwo di erent
sourceof inhomogeneily asthey are typically handled independertly.

Main static eld inhomogeneity: inhomogeneily due to the magnet
itself. This can be due to bad shimming of the magnet or to the
presenceof magnetic materials around it. This inhomogeneily is the
object of this section and of chapter 5.
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‘object induced inhomogeneity : ' Although eq. 3.4 gives a general
solution for the magnetic eld inside the magnet, we are let with two
setsof constarts to be calculated. Typically, theseconstarts are xed
by initial conditions and border conditions. For anyone having already
solveda di eren tial equation, the importance of theseconditions is well
known. Therefore, the presenceof the object within the magnetic eld
will produce a distorsion of the eld, imposing new border conditions
(a border being the limit betweendi erent zoneswith dierent mag-
netic propreties). This problem is of high importance and is discussed
in the next section.

We now, explain a method for reducing the inhomogeneiy of the main
magnetic eld.

Algebraic Reconstruction for Magnetic Resonance Imaging Under
Bo Inhomogeneit y [11]

Various methods have been suggestedand implemented to overcome the
problem of inhomogeneiy-induced image distortions. Thesetechniquescan
be generally classi ed into two main categories: the rst categoryacquiresa
eld map in someway (seenext section) and useit to compute the expected
pixel displacemern or to correct the data directly in the k-space.

The secondcategory of correction techniques are those that do not re-
quire eld mapping. The most important of such methods is the one that
usestwo imagesacquired with gradients of reversedpolarity. Sincethe in-
homogeneiy e ect doesnot changebetweenthe two images,the direction of
the resultant distorsionsis opposite betweenthe two. Hence,by comparing
the two, it is possibleto derive a distorsion-free image. In any casesthe
problem is to invert a mathematical operator (the inhomogeneity) which is,
in general, no more than an approximation. The technique presered here
use an algebraic model and yields a solution whose norm of the error is
minimun.

The technique is preseried for a frequencyencaled 1-D object such that

Z,, _
Fa(k) = ) f(x)e Bt Wexp( i2 kx)dx (4.4)

Here, is the gyro magnetic ratio and t(k) is a time function that depends
on the k-spacetrajectory of the imaging sequence. This equation repre-
seris a linear FREDHOLM integral equation of the rst kind with kernel,
Ki(x;k) = € BMtKexp( i2 kx). That is, the k-spacedata can be ex-
pressedas the outcome of applying a linear operator  (Note that Bg(x) is
known, seenext section) to the original or true spatial intensity suc that :

Fa= (f) (4.5)
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is referred to as the transformation operator sinceit performs the map-
ping between the original object and the k-spacetaking into accourt the
inhomogeneil e ects.

The reconstruction problem becomesone if nding an inverse operator

sud that

( )f)=1(F)=f (4.6)

Let's now discretize our problem : equ. 4.4 becomes:

Ki(kn;xn))f (Xn) = F(kn) n= 1,2, M 4.7

n=1

In this case,the original integral equation is approximated by an MxN linear
systemAf = F4 where A is an MxN matrix with ertries [K| (kn;Xn)];T is
an Nx1 vector with ertries [f (x,)] and Fq4 is an Mx1 vector with ertries
[F4q(kn)]. Discretization of the operator is the matrix A.

In general,the mapping rule that de nes the operator may not be one-to-
one. In this case,the operator is 'singular’, and it is not possibleto construct
the inverseoperator. In someother case,the operator mapsdi erent points
in its domain to di erent yet very closepoints in its range. If these points
are too close, slight contamination with additive noise can render them
indistinguishable, making it di cult to compute the inverse operator. In
sudh casesthe operator is ill posed. It is therefore by no meanan easytask
to nd the inverseof A.

For example,our matrix A cantake the form of the Vandermondematrix
wich is well known to be di cult to handle

2 3
1 1 o1
SRR
v=8 § 1% N (4.8)
N N ... N
0 l PR N

with , = & B&oyn) kexp( j2 , k). Robust methods for solving ill-
conditioned system have already beenstudied asfor examplethe 2 methods
proposedin [11]

Singular Value Decomposition (SVD) Solver
Conjugate Gradient Method

The interrested readeris invited to read [11] for more details. Fig 4.4 shows
someimagesobtained with this method.
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Figure 4.4: Correction of single-shot blipped-EPI data with two-iteration con-
jugate gradiert iteration. Imagesfrom top to bottom are: eld maps, distorded
imagesand corrected images.

4.2.2 Susceptibilit y

As we mentioned before, the susceptibility artifact is a special form of Bg in-
homogeneiy induced by the border conditions. Typically, we will encounter
this problem at the tissue-air interface.

Depending on the application, di erent e ect of this artifact are outlined.
If we are interrested in planning or precision radiotherapy, the geometrical
distorsion induced by the relatively-high inhomogeneily will be of primal
importance. Another e ect of the susceptibility artifact is the intravoxels
spin phasevariation wich leadsto a signal loss. For example, image of the
large inferior frontal and lateral temporal cortices of the human brain are
typically subject to signal loss and therefore di cult to be imaged. These
zonesare however of interest, especially for functional imaging (fMRI).

Di erence in susceptibility can also lead to positive applications as the
variation of susceptibility can be usedto measurecaracteristics of interest
as for example venousblood (explained in [13]). Another interresting ap-
plication usesthe socalled BOLD e ect (Blood Oxygen Level Dependen).
It has beenreported [16] that the magnetic properties of the blood vary
with the level of oxygenation. Therefore, a measureof the susceptibility
can becomea measureof activity of the brain and is usedin fMRI. In [7],
tumors are imaged by measuring their susceptibility variation inducing a
eld variation.

The signal loss phenomenonis especially noticeable in gradient edo
imaging which makesthe problem of fMRI even worseas such imagesmust
be acquired rapidly and therefore usesgradient basedimaging methods.
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Figure 4.5: Phantom image demonstrating the e ect of B inhomogeneit.. The
XY gradient is misadjusted.

4.3 Field mapping

4.3.1 Field mapping using dedicated sequences

As we already explained in section 1.5.2, the phase image acquired with
gradient echo is proportional to the inhomogeneit at ead point. Neverthe-
less,the inhomogeneily is not the only variable to be encaded in the phase:
phaseimaging is well known to encale velocity [15]. In e ect, let G = G(t)
denote a linear magnetic gradient and x = x(t) the proton's position. Then
if % =V, the phaseshift is

Z1e Z1g
2
Gxdt + Gxdt (4.9)

TE
0 =z

% GVTE? (4.10)

and the phaseis proportional to velocity. This technique is employed in
uid study but limits the useof the led mapping to static objects (consider
the blood owing in the veinsfor in vivo experiments).

For this reason, a method called double-DANTE-tagging (DDT) se-
quencehasbeenproposed[8]. The DDT sequencausesa DANTE (for more
details refer to [8]) pulsetrain in the presenceof a contin uous magnetic led
gradient to spatially encade the magnetization within the samplejust prior
to imaging. Preirradiation with the DANTE pulsetrain produce excitation
at the carrier frequency and the DANTE harmonic frequencies. These ex-
cited or “tagged' regions appear as a set of parallel dark lines. Each tag
represerts an isochromat accrossregions where the total magnetic eld is
of equivalent amplitude. The deviation from the rectilinear grid is therefore
proportional to the inhomogeneiy. An image acquired with this technique
is shovn on g 4.5.

lamong others : edo-time encading method, phase contrast (modied Dixon tech-
nigue), group spin echo selection, spectral decomposition



CHAPTER 4. INHOMOGENEITY AND FIELD MAPPING 48

m
/
//
/’ Adm
/ \\ %4

/ \ /,/
/ \ 0
/ (// ) et m
/ /’/¢ !\
& 1

Figure 4.6: Vector diagram showing the principle of the method

This image can be acquired with a scannerequiped with the DANTE
sequenceand the shimming can be made ‘real time' by modifying the eld
in order to orthogonalize the grid.

4.3.2 Field mapping with amplitude image

The phaseimage can be consideredequivalert to a map of the inhomogene-
ity, however, there exists some caseswhere we are interested in value of a
variation of magnetic eld, other than the inhomogeneiy. It can be used
to image the magnetic eld induced by a small piece of metal[6] or could
nd application in detecting a variation of susceptibility in, for instance, a
tumor as described above.

This method is clearly discribed by g. 4.6. This gure shaws the
complex value obtained after reconstruction at a given pixel. m® belongsto
a referenceimage and therefore represerts the inhomogeneiy while is
the value we want to measure.

The method simply consistsin calculating the norm of m which is
strongly modulated by

Someimagesobtained in [6] with this method are shovn on g. 4.7.
They shaw the possibility of mapping the eld generatedby a small magnetic
sample.
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Figure 4.7: GRE amplitude imagesof 2 mM CuSO, phantom. (a) Reference
image of the phantom; (c) image of the phantom with the ferromagnetic object; (e)

amplitude image reconstructed from the di erence betweenthe two data sets; (b

and d) Phaseimagescorresponding respectively to (a) and (c)



Chapter 5

A PRA CTICAL PROBLEM:
Homogeneization of Bgin a
4.7T experimental NMR
machine

5.1 Reconstruction

The problem of reconstruction has already beendescribed in 5.1. This sec-
tion explains an algorithm writen in C * which implements the reconstruc-
tion from the raw data acquired with these sequenceshown in g. 5.2 for
spin-echo and g. 5.3 for gradient-echo. With this sequencethe data are
interlaced asshown on g. 5.1. The reasonwhy interlacemert is usedis that
for selectinga secondline within the sameslice,onehasto wait, after having
measuredthe rst (that isto say the order of T, seconds).for the systemto
comebad to equilibrium (that it to say the order of T1 seconds).As we said
before, T is many times greater than T, and this di erence in time would
be wasted if onehasto wait. By activating an other slice, we don't have to
wait for anything as the signal from the rst slice has already disapeared.
The acquisition is therefore a lot faster (acquiring N slices,N < 10, takes
the sametime than acquiring one).

Each sampleis long integer of 4 bytes. The structure of g. 5.1 exists
in C and can be expressedas

long signal[n_lines][n_slices][n_columns][2_value_per_complex]

All the sectionsof the algorithm are quite straightforward and are quickly
explained here. The section "swapping the bytes' is neededfor compatibilit y
between small-endian and big-endian computers. The section “phasecor-
rection' is neededto correct the data. It comesfrom the fact that the real

!seeappendix A
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r1ilr2i2r3i3...rtMiM

slicel

| sicez | siices | . | slicet | siicez |

slice3

{ {

linel lineN

Figure 5.1: Interlacemert of the slices.Eat line is made up of 3 other lines, eat
from a di erent slice. The line itself is made up of complex points (r,i).

and imaginary valuesare not measuredat the sametime and therefore they
don't have the same phase. The inverse fourier transform usesthe FFT
algorithm and has beenfound on the internet?. The format chosento hold
the imagesis PGM for its simplicity. The PGM le is made of a header
de ne as

P5

# this is a comment
X_resolution y_resolution
maximun_int_value

followed by all the valuesde ning ead pixel.

An image obtained with this algorithm is shovn on g 5.5. This is a
v e-sliceimage of a ping-pong ball lled with CuSO4 to obtain a correct
value of relaxation constarts®. A linear mapping is usedto map the range
of values obtained after the it to the displayable values [0,255} (see g.
5.4)

5.2 Measuremen t of the inhomogeneit y

5.2.1 GRE phase image

As discussedin chap. 1, the phaseimage acquired with a GRE sequencds
proportional, at ead point to the magnetic eld inhomogeneiy. Suc an
image is shovn on g. 5.6. Howewer, a sharp transition can be obsened
from black to white indicating a discortinuity of the eld. O course,there
is no reasonat all for the eld to be dicontinuous.

The reasonof this phenomenonis to be found in eq. 1.83. We already
pointed out in this equation that the eld had to be under a given value

2http:/iwww.in tersrv.com/ dcross/t.h tml

3for example the T2 of the plastic is too small and the signal disappears too quickly
to be measured. This is also the reasonwhy the bonesappear black on medical images

“the depth of the image has beensetto 1
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Figure 5.2: MSME sequenceusedfor multi-slice acquisition with spin eco.
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Figure 5.3: GEFI sequenceusedfor multi-slice acquisition with gradient edo.
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displayed value

255

0 value of the
reconstructed
min_el max_el signal

Figure 5.4: Linear mapping from data to displayable values.

Figure 5.5: Example of image obtained with the reconstruction algorithm (scaled
along the x-axis) using ge sequence.The frequency encaded axis is horizontal

Figure 5.6: Phasemap obtained with GRE sequencegorresponding to the imageof
g. 5.5. Obsene the discortinuity betweenthe black and white zonecorresponding
to ajump between =2to =2 of the phase.
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o pixels

pl2__ | Q.

Figure 5.7: Example of a phasepro le along a given direction. The discortin uity
comesfrom the computation of the function Atan

for the phase encading method to work properly. This sharp transition
clearly shavs the phasejump between =2 and =2. To avoid this anoying
situation, the phasehasto be corrected?.

Correction of the phase

A simple correction method is implemented in algorithm recons. This method
assumesthat the inhomogenity strength is such that there is no successie
jump in the samedirection, that is to say that we have to correct for a jump
of either or . Running the samealgorithm twice would however correct
the “secondjump'.

Let's supposethat the phasehasthe prole shavn on g. 5.7. It is easy
to seehow the discortinuity can be corrected. In e ect, we now the size of
the jump (). Therefore correcting the phasemeansadding or substracting

in the regionsbetweentwo jumps. The o wcart of this algorithm is pre-
serted on g. 5.8. The result of the algorithm is shovn on g. 5.9: the
correction is successful'However, one error would have catastrophic conse-
guenceshas it would propagate. As we will seelater, this method does'rt
work inconditionaly, there exist somecaseswhere the result is far from the
expectedone. Sofar, theseconditions have not beenexplicitely formulated.

5.2.2 SE phase image

We explained in section 1.5.3 that the phaseimage of a SE sequencewas
consideredas zero. It may therefore seemstrange that we obtain all these
fringeson g. 5.10, showving a phaseimage acquired with SE. In fact, this
e ect is no souncommonwhen dealing with fourier transform. What we see
is nothing elsethan a linear phase. We don't seea linear progressionfrom
left to right becausethe phaseis calculated with the function “atan' which

yields a result between 5;+ 5. Therefore, the straigth line is wrapped

50ne could also reduce TE although TE has a minimun aceptable value (related to
T2)



CHAPTER 5. A PRACTICAL PROBLEM

phase[Ji+1]=
phase[i+1]- p

phase[i+1]=
phase[i+1]+p

Figure 5.8: Method usedto correct the discortinuty of the phase.

set
current
position

56

Figure 5.9: Left: phaseimage corrected with the algorithm of g. 5.8(the back-

ground has beensetto zero). Right: without correction.
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every . In fact, the straigth line comesfrom the fact that the acquisition
is not perfectly aligned with the edho. In this case,assuminga delay of
seconds the received signal can be rewritten as

S(t) = (x;y)e 2 7Bt )x+GyToylguqy (5.1)
Zobject
= (x;y)e Cx X elkextkyy)igydy (5.2)
object
with the usual de nition for ky;ky. Indeed, the phaseimage (after recon-
struction) is linear along the frequency-encaled axis with a slope equal to

Gx

Figure 5.10: Phase map obtained with SE sequence. Note the linear behavior
along the frequency encaled axis.

5.3 Correction of the eld: SHIMMING

At this stage, we now have a map of the inhomogeneily that we want to
remove. Although, algebraic methods have proven sucessullto improve the
reconstructed image by using this information, it is also possible(and use-
full) to physical removedit. That is to say we can usethis information to
localy shim® the scanner(the DANTE method is also local) before taking
an other picture hopefully better.

The tool to accomplish this task is a set of scanner's parameters that
can be changed before the operation that correspond to a certain current
in the correcting coils. More precisely these coe cien ts tell how much of a
given function is presern in the correcting eld. These correcting function
are for example: x;y;z;z%;xy; :::

A simpleidea, yet powerful is thereforeto develop the measuredbias eld
in term of these functions and simply substract them from the correcting
eld. This is exactly what the algorithm mk_coef (appendix B) does. In
order to explain how it works, we have to go bad to theory.

We know our function B(X;y;z) at n points (X;;Vi; Z)

B(Xj:YirZk) = Vi« i=Lasl =103 k=1 K n=1JK
(5.3)

Sthe processof shimming is explained in section 3.2.1
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where 1,J,K de ne a bounding box inside the sphere. We want to approxi-
mate this function by a linear combination of m basefunctions ' |(x;y; z)

B (xv;2)= 1 1Xy;2)+ i+ m' m(XYy;2) (5.4)
with m  n. If we want our n points to verie 5.4 we may write
0, . . 1 0
1(X1;Y1521) 2(X1y1;21) it m(Xarya Z1) Y111
"1(X2;y1:21) " 2(X2iy1iz1) it " m(X2sy1Zn) O 1 Y211
. . . . 1 .
: : : : ) :
"1(Xasynza) U a(Xaiynzi) i m(XaiY1Z1) % : E Yi11
(X1 y2;z1) ' a(Xary2;z1) it m(X1rY2;Z1) ' Y121
. . . n .
YaXasyizk) U a(Xasyiizk) it m(Xaiviizk) VAIRS
or using matrices notation :
y (5.5)

Of coursethis systemis sur-dimensionedand there is no solution. However,
it may be shown that the solution which minimise the squareroot of the
error is given by solving the system

T o= Ty (5.6)

This system can be solved by using LU decomposition with partial pivot-
ing’ followed by a backward and forward substitution to actually solve the
systen?.

It is now straightforward to solve our problem. We choose our base
functions to be’

'1:1'2:X'3:y 4=z 5= Z
Unfortunately, we now facetwo big problems:

We don't know exactly where is the origin of the correcting system.
In this cortext, the function speci ed above are not orthogonal. For
example if we add somez? we will in fact add (z  a)? which is the
sum of 3 of thesefunctions.

We don't know the link betweenthe coe cien ts of the developmert
and the correcting coe cien ts. While the former are expressedn tesla,
the later are expressedin fraction of the maximun allowed current in
a given shimming coil. Following eq. 3.13 we expect the relationship
to be linear.

"routine from numerical recipies in C : ludcmp
8routine from numerical recipies in C :lubksb
9This choice is of course not innocert and corresponds to available correcting coils.

%
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The shimming itself cannot be done immediately, we rst have to compen-
sate for these two points. Furthermore, apart from these “practical prob-

lems', it hasbeenreported that high-order® shimming is unstable [9]. That

is to say that system5.6is likely to be ill-conditioned*. For this reason,[9]
propseto solve the “shimming system' by using singular value decomposi-
tion, cancelingout the small singular valuesand thus insuring corvergence
12 toward a solution. It is still to be proved, though, that this method is not

robust enoughand would'nt converge.

531 Test

In order to prove the validity of the algorithm preseried above, sometests
have beencarried out on phantom images. Theseimagesare shovn on g.
5.11 and the results are preseried on table 5.1. The test coe cien ts are
choosento correspond to the order of the expectedinhomogeney, that is to
sa the order of the PPM. Thesetests are clearly conclusiwe.

ag

Ay ay az azo aXy Az

ay z

le-6

le-6 le-6 le-6 le-6 le-6 le-6

le-6

1.0000e-06 9.9999e-07 9.9999e-07 9.9999e-07 9.9999e-07  1.0000e-06  9.9999e-07 1.0000e-06

0 0 0 0 1.2364e-6 0 0 0
3.06e-14  9.79e-16 7.96e-17 O 1.236398e-06 -1.78-18 3.5e-17 1l.1e-15
0.2e-7 0 le-6 0 0 0 0 0
1.9995e-08 -6.82e-15 1.0000e-06 O 5.657016e-12 1.374852e-14 3.37e-16  4.61le-15

Table 5.1: Results of the test carried out respectively on g 5.11 A B C.
The rst line of eat ertry shows the forced coe cien ts (usedto create g.
5.11), the secondline shows the coe cien ts obtained with mk_coef.

5.3.2 Result

Before attempting to reduce the inhomogeneiy, we have to nd the rela-
tionship betweenthe coe cien ts. To accomplishthis task a serieof imageis
taken. All the parametersare held constart while onecoe cien ts is changed.
We now presern the results obtained with two setsof data.

The x gradien t

Nine acquisitions have beenmade, ead of them corresponding to a di erent
value of the x_shimming coil current. The image is reconstructed using
recons, the phaseis computed and corrected as described above (see g.

Pysedin this context for xy: zx; zy; x> y?;z%;Z2°

" More precisely, this is the action of shimming itself which is ill-p osed, i.e trying to
solve the coe cien t for a null eld

12The samereasonis given in the algebraic reconstruction from section 4.2.1
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Figure 5.11: Phantom gures usedfor the test. The results are showvn on
table 5.1 (A) all the basefunction are preseris (B) z2 only (c) constart term
andy

5.12)). Howewer, as it can be seenon the g. 5.12, only the region of
interest (ie the region used by mk_coef) is corrected. The dewvelopmert is
then computed with mk_coef.

The calculated coe cien ts arepreseried in g. 5.13. A serieof graphique
is then drawn :

On g. 5.14 one can seeall the coe cien ts. Obviously, the most
varying coe cien t is not the expected one but the constart term ap.
However, as we mentioned before, we don't know is we are using the
right origin. Therefore, adding any term hasan e ect on the constart
coe cien t13. Taking into acourt the fact that the simming coil are
probably not exactly aligned, we can explained this quite surprising
behaviour of the ag coe cien t.

On g. 5.15we compareall the coe cien t without the constart term
ap. Unfortunately, we still don't seewhat we except. The term a, and
a,2 are dominant. Howewer, by looking at g. 5.12 we seethat both
the second(line 81) and third (line 82) line (corresponding respectively
to -2.4 and -2.6 ) have a particular caracteristic. The last slice of the
rst line is very white while the rst sliceof the third line is very black.
This is due to the phase correction algorithm which depends on the

3For obvious reasons, the shimming coil are less optimized than the linear coils, in
general, the value of the coe cien ts we are dealing with doesn't even play any role at all.
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Figure 5.12: Set of imagesusedto nd the relationship betweenthe shim current
and the generated eld. The squaresareo coursearti cial and indicate the region
used by mk_coef to calculate the coe cien ts. The phaseis corrected inside the
squaresonly.

rst pixel read for correction. In turn, this jump in the z-direction
induce a variation of the computed coe cien t along this direction.

On g. 5.16we naly obsenethe linear relationship! We rst notice a
little surprise: what we called "x' is in fact calledy'. This iso course
absolutely arbitrary . The only shadav on our straigth line is the last
point corresponding to a gradient valueof 3:8. However, if we gobadk
to g. 5.12,we seethat the line 87 is corrupted. The phasecorrection
algorithm didn't work. Without taking this point into acourt, we nd

that the linear relationship betweenthe computed coe cient a, and
the shimming coil coe cien t that we call Ay is

ay10® = 7:.01+ 2:73A, (5.7)

The correlation coe cient is 0.9924, indicating a very strong con -
dencein the linear relation.

The xy gradien t

The methodology explained above is also followed for the determination of
the relationship betweenthe computed coe cien ts of the seriedeveloppmert
and the current intensity value of xy-shimming coil. The serieof imagesused
is shwon on g. 5.17,the numerical valuescan be found in g. 5.13.

We are not very surprise, in the light of the commerts we made for the
x-gradient, to discover in g. 5.18that the coe cien t ag varies quite a lot.



CHAPTER 5. A PRACTICAL PROBLEM 62

Figure 5.13: table showing all the calculated coe cien ts. The secondand third
columns correspond to the selected("hardware’) coe cien ts.
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Figure 5.14: Graphic shawing all the coe cien ts for x-gradient.
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Figure 5.15: Graphic shawing all the coe cien ts, exceptag for x-gradient .
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Figure 5.16: Linear relationship between calculated and chosencoe cien ts.

Furthermore, the three dark zonesof the rst linesof g. 5.17indicate that
the three rst point of the z- and z?-coe cien ts will be problematic. This
is endeedwhat we obsene.

Unfortunately, g. 5.19is not at all what we expected. We don't nd
any relationship at all. Even worse,we can't even state which coe cien t is
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Figure 5.17: Set of image used for the xy gradient shim. Note the pathological
behaviour along the z-direction of the three rst lines.

related to the xy-gradient of the scanner. It is too early to try to explain
the behaviour of these curves. More experiments have to be carried out,
somemore points have to be measured,the phasein the z-direction hasto
be corrected. Howevwer, it is certainely not a reasonfor suicide, the curves
shawn in this text are the result of a lot of manipulations and the calculated
coe cien ts appear to be quite responsive.

5.3.3 Conclusion

Although we haven't ful lled our initial promise, this chapter showed that
we have beenable to measurethe eld and decomposeit in a serieof usefull
functions. This decomposition is optimun in the senseof the least square
error. We found that the inhomogenity was big and we couldn't measure
it with typicall values of encading parameters. We therefore proposed a
method for correcting the measure. We found that method could give very
good results but wasn't converging to the solution under any circumtances.
We were able to prove the linear relationship betweenthe current of the
x-shimming coil exists but were unable to extend that result to other coils.
The remaining stepsare therefore :

Improving the phase correction so as to unsure corvergencetowards
the true eld.

Correcting the error introducedby that algorithm alongthe z-direction.
Acquiring more data so asto obtain a straight line for all coils.

Feedingthe coe cien ts bad in the scannerwhile praying for the best.
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Figure 5.18: Graphic shawing all the coe cien ts for xy-gradient.
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Figure 5.19: Graphic shawing the relevant coe cien ts for xy-gradient.
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CONCLUSION

The end hasalways beena particular momert. Asin physic aninterface, this
is where unexpected things happen. Right now, we don't have much, says
the pragmatic, tomorrow we may have much more answers the perse\ering.

The technique preseried here s certainly not a goal by itself and seems
desperately helplessin front of the NMR reality. However mastering is
an art, if not an illusion. For this reason, having played with the basic
equations dealing with an inhomogeneous eld and having been able to
derive concrete results is one step towards a better understanding of the
phenomenon,understanding that will be neededfor, one day, controling the
eld at the scaleof the pixel.

Far from that, we have neverthelesssummarizedthe principles of NMR,
introducing the e ect of the inhomogeneity. We have written an algorithm
allowing for the mapping of the eld under strong inhomogeneity. We have
dewelop the basictools that would permit to reducethe eld inhomogeneily
in any region of interest, without any modi cation of the scanner.

This is the end, | hope unexepected things will happen.
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App endix A

Algorithm RECONS

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "include/myUtils.h"
#include "includef/fft/fourier.h"

#define LENGTHO
#define THRESHOL&D
#define EPS1

float max(float*,int);

float min(float*,int );

int main(int argc,char* argv[])

{
if (argc !'= 2)
{
printf("recons <slice_number>\n");
exit(1);
}
FILE * fp;

/' READINGPARAMETEHRROMFILE "param"

char strbuf[256]; /[ no more than 256 char per line in file param
int SWAP_ENDIAN;

int PHASE_CORUMP_COR,;

int N_BYTE;

70
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float GAMMA;

float Tp;

float DELTA _X,DELTA_Y,DELTA Z;
int X_MAX,Y_MAX,Z_MAX;

int H_RES,V_RES;

int N_SLICE;

char DATA_PATHI[256];

char DATA_EXTI[256];

char FLD_PATHI[256];

char IMG_PATH[256];

int  WR_PGM_NORVR_PGM_PHASHR_PGM_SIGNALWR_PGM_SIGNAL_I;
int WR_FLD;

if ((fp=fopen("param”,"r"))==NULL)
{
printf("can't open parameter file ‘'param’\n");
exit(1);
}

fgets(strbuf,255,fp);

fgets(strbuf,255,fp);
fscanf(fp,"%d\n",&SWAP_ENDIAN):
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d\n",&PHASE_COR,&JUMP_COR);
fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&N_BYTE);

fgets(strbuf,255,fp);

fscanf(fp,"%fn",&GAMMA);

fgets(strbuf,255,fp);

fscanf(fp,"%f\n",&Tp);

fgets(strbuf,255,fp);

fscanf(fp,"%f  %f %f\n",&DELTA_X,&DELTA_Y,&DELTA_Z);
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d %d\n",&X_MAX,&Y_MAX,&Z_MAX):
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d\n",&H_RES,&V_RES);
fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&N_SLICE);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",DATA_PATH);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",DATA_EXT);

fgets(strbuf,255,fp);
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fscanf(fp,"%s\n",FLD_PATH);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",IMG_PATH);

fgets(strbuf,255,fp);

fscanf(fp,"%d  %d%d %d\n", &WR_PGM_NORM/R_PGM_PHASE,//

&WR_PGM_SIGNAL&RVR_PGM_SIGNAL_);

fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&WR_FLD);

fgets(strbuf,255,fp);

if (strcmp(strbuf,"#end\n")!=0)
{
printf("%sparam file doesn't seem corect\n",strbuf);
exit(1);
}

fclose(fp);

printf("***xx processing %s *****\n" argv[1]);

long signal [V_RES][N_SLICE][H_RES][2]; /I initial signal
float signal_float[V_RES][N_SLICE][2*H_RES][2];

float signal_real [V_RES][N_SLICE][2*H_RES];

float signal_img [V_RES][N_SLICE][2*H_RES];

float image_real [V_RES][N_SLICE][2*H_RES];

float image_img [V_RES][N_SLICE][2*H_RES];

float norm[V_RES][N_SLICE][H_RES];

float phase[V_RES][N_SLICE][H_RES];

char file_to_read[LENGTH];
char file_fld[LENGTH];
char file_norm[LENGTH];
char file_phase[LENGTH];
char file_signal_r[LENGTH];
char file_signal i[LENGTH];

sprintf(file_to_read,"%s%s%s",DATA_ PATH,argv[1],DATA_EXT) ;
sprintf(file_fld,"%s%s.fld",FLD_PATH,argv[1]);
sprintf(file_norm,"%s%s_norm.pgm",IMG_PATH,argv[1]);
sprintf(file_phase,"%s%s_phase.pgm”,IMG_PATH,argv[1]);
sprintf(file_signal_r,"%s%s_signal_r.pgm",IMG_PATH,argv[1]) ;
sprintf(file_signal_i,"%s%s_signal_i.pgm",IMG_PATH,argv[1]) ;
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//********************* R EADI N G’H E FI LE kkkkkkkkkhkhkkhkkkkkkkkkhkhkkhkk

if ((fp=fopen(file_to_read,"rb"))==NULL)
printf("can't open %s\n"/file_to_read);
else
{
printf("reading %s ..." file_to_read);
printf("%d values read\n",fread(signal,N_BYTE,//
V_RES*H_RES*N_SLICE*2,fp));
fclose(fp);
}

//******************** SWAP P I N CEH E BYT Egc*************************

if (SWAP_ENDIAN)
{
long* ptr;
ptr = &(signal[0][0][0][O]);
for (register int i=0;i<V_RES*H_RES*N_SLICE*2;i++)

{
SwapBytes(ptr,N_BYTE);
ptr++;
}
}
//****************** P HAS H:O R R ECT I OQRP\-***************************

if (PHASE_COR)
{
/I interleaved O filling
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)

{
signal_float[i][k][2*]][O] =signal[i][K][][0];
signal_float[i][K][2*][1] = 0;
signal_float[i][k][2*]+1][0] =0
signal_float[i][K][2*]+1][1] =signal[il[K][Il;
}

for (register int k=0;k<N_SLICE;k++)
for (register int i=0;i<V_RES;i++)
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for (register int j=0;j<2*H_RES;j++)

{
signal_float[i][K][j][0]= pow(-1,i+j)*signal_float[i][K][j][C];
signal_float[i][K][j][1]= pow(-1,i+j)*signal_float[i][K][j][1];
}
}
//************ SPLITI NG REAL& I MAG I NARPART*********************

for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<2*H_RES;j++)

{
signal_real[i][K][j] = signal_float[i][K][j][O];
signal_img[i][K][] = signal_float[i][K][j][1];
}
//***************** COM PUTI N‘G_' E I FFT kkkkkkkkkkkkhkkhkkkkhkkhkkkkkkhkkhkkk

for (register int k=0;k<N_SLICE;k++)
{

float*  ptr_real_in;
float* ptr_real_out;
float* ptr_img_in;
float*  ptr_img_out;

/I inverting along the x_direction
for (register int i=0;i<V_RES;i++)

ptr_real in = &(signal_real[i][K][0]);
ptr_img_in = &(signal_img[i][K][0]);
ptr_real out = &(image_real[i][Kk][0]);
ptr_img_out = &(image_img[i][K][0]);

fft_float(2*H_RES,1,ptr_real_in,ptr_img_in,ptr_real_out,ptr_img_ou

t);
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/I inverting along the y_direction

float v _real in [V_RES];
float v_img_in [V_RES];

float v _real out [V_RES];
float v_img_out [V_RES];

for (register int j=0;j<2*H_RES;j++)

{
for (register int i=0;i<V_RES;i++)

{

v_real_in[i] = image_real[i][K][jI;
v_img_in[i] = image_img[i][K][];

}
fft_float(V_RES,1,v_real_in,v_img_in,v_real_out,v_img_out);
for (register int i=0;i<V_RES;i++)

{

image_real[i][K][j] = v_real_out]i];
image_img[i][K][j] = v_img_out[i];

}

Ylend for |j

// *kkkkkkkkkkkk CO M P UTI Nm R '\AN D P HAS Ec*************************************

for (register int j=0;j<H_RES;j++)
for (register int i=0;i<V_RES;i++)

{
norm[i][K][j]l=sart(SQR(image_real[i][K][(H_RES/2)+j])//
+SQR(image_img[i][K][(H_RES/2)+j]));
phaseli][K][i] = atan(image_img[i][K][(H_RES/2)+j]/ 1l
image_real[i][K][(H_RES/2)+]]);
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} /[ end for Kk

[[rEFrRRRI, saving the reconstructed signal to disk *rkirkkitkkiikiiti

float signal_reconstructed[V_RES][N_SLICE][H_RES][2];
char file_name[LENGTH];

for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
for (register int i=0;i<V_RES;i++)

signal_reconstructed[i][K][j][0] =image_real[i][K][H_RES/2+i];
signal_reconstructed[i][K][jI[1] =image_img[i][K][H_RES/2+j];

sprintf(file_name,"%s%s_reconstructed",FLD_PATH,argv[1]);

if ((fp = fopen(file_name,"w")) == NULL) printf("can't open/create /I
%s\n" file_name);
else

fwrite(signal_reconstructed,N_BYTE,H_RES*V_RES*N_SLICE*2,fp);
fclose(fp);

//****************** M EAI\AN DVAR IAN C E**********************************

float min_el=min(&norm[0][0][0],V_RES*N_SLICE*H_RES);
float max_el=max(&norm[0][0][0],V_RES*N_SLICE*H_RES);

double mean[N_SLICE];
double variance[N_SLICE];
int compt = O;

/[ mean
for (register int k=0;k<N_SLICE;k++)
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mean[k] = 0O;
for (register int i=0;i<V_RES;i++)
for (reqgister int j=0;j<2*H_RES;j++)
it (norm[i][K][] > (max_el-min_el)/2)

mean[k] += norm[i][K][j];
compt++;
}
if (compt != 0)
mean[k] = mean[k]/compt;
else printf("problem  while calculating the mean: //
no value exceeds threshold\n");
compt = 0O;

}

/[ variance

for (register int k=0;k<N_SLICE;k++)
variancelk] = 0;

for (register int i=0;i<V_RES;i++)
for (register int j=0;j<2*H_RES;j++)

if  (norm[i][K][] > (max_el-min_el)/2)
{
variancelk] += SQR(norm[i][K][j]-mean[k]);
compt ++;
}
if (compt != 0 ) variancelk] = variance[k]/compt;
compt = 0O;
}
//************** WR ITI N GTH E I MAG EI'O D I S K *kkkkkkkkkkhkkhkkkhkkhkkhkkhkhkkkkhkhkhkkhkx

unsigned char img_pgm[V_RES][N_SLICE][H_RES];
/lwriting  the norm
if (WR_PGM_NORM)

{
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if ((fp = fopen(file_norm,"wb"))== NULL) printf("can't open %s\n" file_norm);

else
{
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
{
img_pgm[iJ[k][j]=(unsigned char) /I
((255/(max_el-min_el))*(norm[i][K][j]-min_el));

}
fprintf(fp,"P5\n");
fprintf(fp,"# %s means/variance :"file_norm);
for (register int k=0;k<N_SLICE;k++) fprintf(fp,"%f/%f ",mean[Kk],variance[K]);

fprintf(fp,"\n");

fprintf(fp,"%d %d\n",H_RES*N_SLICE,V_RES);

fprintf(fp,"255\n");

printf("%d  bytes written in %s\n" fwrite(img_pgm,//
1,H_RES*V_RES*N_SLICE,fp),file_norm);

fclose(fp);
}
}
[k correction of the phase in the region of interrest — ****

if (JUMP_COR)

{

for (register int k=0;k<N_SLICE;k++)
for (register int j=(V_RES/2)-X_MAX;j<=(V_RES/2)+X_MAX;j++)
for (register int i=(H_RES/2)-Y_MAX;i<=(H_RES/2)+Y_MAX;i++)

{
if ((phaseli][K][j]-phase[i+1][K][]) > (M_PI-EPS) )
phase[i+1][K][j] = phasel[i+1][K][j] + M_PI,
else if ((phase[i][k][j]-phase[i+1][K][]) < (- M_PI+EPS))

phase[i+1][K][j] = phase[i+1][K][j]- M_PI;
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for (register int k=0;k<N_SLICE;k++)
for (register int i=(H_RES/2)-Y_MAX;i<=(H_RES/2)+Y_MAX;i++)
for (register int j=(V_RES/2)-X_MAX;j<=(V_RES/2)+X_MAX;j++)

if  ((phase[i][K][j]-phase[il[K][+1]) > M_PI-EPS)
phasel[i][K][j+1] = phase[i][K][j+1] + M_PI;
else
if  ((phase[i][K][j]-phase[i][K][+1]) < -M_PI+EPS)
phase[i][Kk][j+1] = phase[i][K][j+1]- M_PI;

[l e draw a rectangle around the region of interrest HHIRIIIK

for (register int k=0;k<N_SLICE;k++)
{
for (register int i=(H_RES/2)-Y_MAX;i<=(H_RES/2)+Y_MAX;i++)
phase[i][K][(V_RES/2)-X_MAX-1]=+M_PI/2;
for (register int i=(H_RES/2)-Y_MAX;i<=(H_RES/2)+Y_MAX;i++)
phase[i][K][(V_RES/2)+X_MAX+1]=+M_PI/2;
for (register int j=(V_RES/2)-X_MAX;j<=(V_RES/2)+X_MAX;j++)
phase[(H_RES/2)-Y_MAX-1][K][j]=+M_PI/2;
for (register int j=(V_RES/2)-X_MAX;j<=(V_RES/2)+X_MAX;j++)
phase[(H_RES/2)+Y_MAX+1][K][[]=+M_PI/2;

}

Y/ end if JUMP_COR

/I writing the phase
if (WR_PGM_PHASE)

{
unsigned char img_pgm[V_RES][N_SLICE][H_RES];

float min_el=min(&phase[0][0][0],V_RES*N_SLICE*H_RES);
float max_el=max(&phase[0][0][0],V_RES*N_SLICE*H_RES);
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if ((fp = fopen(file_phase,"wb"))== NULL) printf("can't
else
{
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
{
img_pgm(i][K][i]=//
(unsigned char) ((255/(max_el-min_el))*(phase[i][K][j]-min_el));
}
fprintf(fp,"P5\n");
fprintf(fp,"# %s: min phase value : %f
max phase value : %f\n" file_phase, min_el, max_el);
fprintf(fp,"%d %d\n",H_RES*N_SLICE,V_RES);
fprintf(fp,"255\n");
printf("%d  bytes written in %s\n",//
fwrite(img_pgm,1,H_RES*V_RES*N_SLICE,fp),file_phase);
fclose(fp);

}
}

[Iwriting the real part of the original signal
if (WR_PGM_SIGNAL_R)
{

float tmp_pgm[V_RES][N_SLICE][H_RES];
unsigned char img_pgm[V_RES][N_SLICE]J[H_RES];

for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
tmp_pgm[i]k]i] = (float)  signalli][K][][0];

float min_el=min(&mp_pgm[0][0][0],V_RES*N_SLICE*H_RES);

80

open %s\n" file_phase);

float max_el=max(&tmp_pgm[0][0][0],V_RES*N_SLICE*H_RES);
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if ((fp = fopen(file_signal_r,"wb"))== NULL) printf("can't
else
{
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
{
img_pgml[i][k][j]=(unsigned char)//
((255/(max_el-min_el))*(tmp_pgmli][K][j]-min_el));
}
fprintf(fp,"P5\n");
fprintf(fp,"# %s\n" file_signal_r);
fprintf(fp,"%d %d\n",H_RES*N_SLICE,V_RES);
fprintf(fp,"255\n");
printf("%d  bytes written in %s\n",//
fwrite(img_pgm,1,H_RES*V_RES*N_SLICE,fp).file_signal_r);
fclose(fp);

}
}

/[ writing the imaginary part of the original signal
if (WR_PGM_SIGNAL_I)
{

short img_pgm[V_RES][N_SLICE][H_RES];

if ((fp = fopen(file_signal_i,"wb"))== NULL) printf("can't
else
{
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)
{
img_pgm([iJ[k][j]=(short) (20*(signalli][K][j][1]+17000));
}
fprintf(fp,"P5\n");
fprintf(fp,"# %s\n",file_signal_i);
fprintf(fp,"%d %d\n",H_RES*N_SLICE,V_RES);
fprintf(fp,"65535\n");
printf("%d  bytes written in %s\n",//
fwrite(img_pgm,2,H_RES*V_RES*N_SLICE,fp),file_signal i);

81

open %s\n" file_signal_r)

open %s\n" file_signal_i);
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fclose(fp);

}
}

/[ writing the magnetic field
if (WR_FLD)
{

float fld [V_RES][N_SLICE][H_RES];

if ((fp = fopen(file_fld,"wb"))== NULL) printf("can't open %s\n" file_fld);
else
{
for (register int i=0;i<V_RES;i++)
for (register int k=0;k<N_SLICE;k++)
for (register int j=0;j<H_RES;j++)

fld[i] k][] = -(phase(i][K][[/(GAMMA*Tp));
printf("%d  bytes written in %s\n" fwrite(fld,4,H_RES*V_RES*N_SLICE,fp),file_fld);
fclose(fp);
}
}
printf("***** done %s *****\n" argv[1]);

Y/ end main
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Algorithm MK _COEF

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "include/matrix.h"
#include "include/nrutil.h"
#include "minmax.c"

#define FLD_EXT'.fld"

void ludcmp(float **a,int n,int *indx, float *d);
/I performs LU decomposition (numerical recipies)
void lubksb(float **a,int  n,nt  *indx, float b[));

/l solve linear system a.x=b

int main(int argc,char* argv[])

{
if (argc !'= 3)
{
printf("mk_coef  <first_slice> <last_slice>\n");
exit(1);
}
FILE * fp;

/I READINGPARAMETHRROMFILE "param"

char strbuf[256]; /I no more than 256 char per line in file param

83
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int SWAP_ENDIAN;

int PHASE_COR,JUMP_COR,;

int N_BYTE;

float GAMMA;

float Tp;

float DELTA_X,DELTA_Y,DELTA Z;
int X_MAX,Y_MAX,Z_MAX;

int H_RES,V_RES;

int N_SLICE;

char DATA_PATH[256];

char DATA_EXT[256];

char FLD_PATH[256];

char IMG_PATHI[256];

int WR_PGM_NORYWR_PGM_PHASHR PGM_SIGNALWR PGM_SIGNAL_I;
int WR_FLD;

if ((fp=fopen("param","r"))==NULL)
{
printf("can't open parameter file ‘'param’\n“);
exit(1);
}

fgets(strbuf,255,fp);

fgets(strbuf,255,fp);
fscanf(fp,"%d\n",&SWAP_ENDIAN);
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d\n",&PHASE_COR,&JUMP_COR);
fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&N_BYTE);

fgets(strbuf,255,fp);

fscanf(fp,"%fn",&GAMMA);

fgets(strbuf,255,fp);

fscanf(fp,"%f\n",&Tp);

fgets(strbuf,255,fp);

fscanf(fp,"%f  %f %f\n",&DELTA X,&DELTA_Y,&DELTA 2Z);
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d %d\n",&X_MAX,&Y_MAX,&Z_ MAX);
fgets(strbuf,255,fp);

fscanf(fp,"%d  %d\n",&H_RES,&V_RES);
fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&N_SLICE);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",DATA_PATH);
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fgets(strbuf,255,fp);

fscanf(fp,"%s\n",DATA_EXT);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",FLD_PATH);

fgets(strbuf,255,fp);

fscanf(fp,"%s\n",IMG_PATH);

fgets(strbuf,255,fp);

fscanf(fp,"%d  %d%d%d\n", &WR_PGM_NORM,

&WR_PGM_PHASR/R_PGM_SIGNAL&RYR_PGM_SIGNAL_);

fgets(strbuf,255,fp);

fscanf(fp,"%d\n",&WR_FLD);

fgets(strbuf,255,fp);

if (stremp(strbuf,"#end\n")!=0)
{
printf("%s  param file doesn't seem corect\n",strbuf);
exit(1);
}

fclose(fp);

float reader[V_RES][N_SLICE][H_RES];
float (*backbone)[H_RES][V_RES];

int first_slice,last_slice k;

char file_to_open[50];

float **phy;

float **matrix_a;

float **matrix_y;

float * vector_y;
float **b;

float Iu_flag;
int  *indx;

float x;
float vy;
float z;

first_slice = atoi(argv[l)]);
last_slice = atoi(argv[2]);
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Kk

0;

backbone = (float(*)[H_RES][V_RES]) /I

malloc(sizeof(float{H_RES][V_RES])*(last_slice-first_slice+1)* N_SLICE);
for (register int i=first_slice;i<=last_slice;i++)
{
sprintf(file_to_open,"%s%d%s",FLD_PATH,i,FLD_EXT);
if ((fp =fopen(file_to_open,"rb")) == NULL) printf("can't open %s\n" file_to_open);
else
{

printf("%d

bytes read in %s\n",//

fread(reader,N_BYTE,H_RES*V_RES*N_SLICE,fp),file_to_open);

for (register

{

int n=0;n<N_SLICE;n++)

for (register int line=0;line<V_RES;line++)

for (register int col=0;col<H_RES;col++)
backbonel[k][line][col] =reader[line][n][col];
k++;
}
Yl end else
} /I end for i
k=N_SLICE*(last_slice-first_slice+1); /Inumber of images
// kkkkkkkkkkkkkkkkkhkkhkkkkkkhkkhkkkkkkkkhkkkkhkkhkkkkkhkkhkkkkkkkkhkkkkhkkhkkkkkkkkkk *kkkkkkk *% k%% &
1
/ DEVELOPPINGHEMAIN STATICMAGNETIEIELD
1 B(x,y,2) ~=a 0+axx +ayy +azz +az2z'2 +axyxy +axzxz + a.y.
1
1
1
1
printf("%  d %d\n",X_MAX,Y_MAX);

phy = matrix(1,(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),1,8);
b = matrix(1,(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),1,1);

int

line_compt

::|_1
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for (register int j=-X_MAX;j<=X_MAX;j++)
for (register int i=-Y_MAX;i<=Y_MAX;i++)
for (register int I|=-Z MAX;l<=Z MAX;|++)

{
X=];
y=i+2;
z=l;
phy[line_compt][1] =1,
phy[line_compt][2] = X;
phy[line_compt][3] =y,
phy[line_compt][4] = z;
phy[line_compt][5] = SQR(2);
phy[line_compt][6] = X*y;
phy[line_compt][7] = X*z;
phy[line_compt][8] = y*z;
b[line_compt][1] =/l
backbone[(int )(k/2+)][(int) (H_RES/2)+i][(int) (V_RES/2)+]];

line_compt ++;

/[ solving phy t * phy * alpha = phy t * b

matrix_a = matrix(1,8,1,8);
matrix_y = matrix(1,8,1,1);
vector_y = vector(1,8);

indx = ivector(1,8);

matrix_a = mult(trans(phy,(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),8),8,//
(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),phy,(X_MAX*2+1)*(Y_MAX+1)*(Z_MAX*2+1),8) ;

matrix_y = mult(trans(phy,(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),8),8,//
(X_MAX*2+1)*(Y_MAX*2+1)*(Z_MAX*2+1),b,(X_MAX*2+1)*(Y_MAX¥2)*(Z_MAX*2+1),1);

for (register int i=1;i<=8;i++)  vector_y[i]l=matrix_y[i][1];

ludcmp(matrix_a,8,indx,&Iu_flag);
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lubksb(matrix_a,8,indx,vector_y);

printf("\nB(x,y,z) ~~al0+axx +ayy +

a_zz + a_z2z"2 + a xyxy + axzxz + a.yzyz\n");
for (register int i=1;i<=8;i++) printf("%e  “,vector_yl[i]);
printf("\n");
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FFT

How much computation is involved in computing the discrete Fourier
transform 2.8 of N points ? For many years, until the mid-1960s,the stan-
dard answer wasthis : If we take alook at eq2.11, we seethat the vector of
hg's is multiplied by a matrix whose(n; k)th elemer is the constart W to
the power n x k. The matrix multiplication producesa vector result whose
componerts are the H,'s. This matrix multiplication evidertly requiresN 2
complex multiplications, plus a smaller number of operations to generate
the required powersot W. So, the discrete Fourier transform appearsto be
an O(N?) process. These appearancesare deceiving! The DTFT can, in
fact, be computed in O(NlogN) operations with an algorithm called the
Fast Fourier Transform or FFT. The di erence betweenNlogpN and N2 is
immense. With N = 10°, for example, it is the di erence between, roughly
30 secondsof cpu time and 2 weeksof cpu time on a microsecondcycle time
computer. The existenceof an FFT algorithm becamegenerally known only
in the mid-1960's, from the work of J.W. Cooley and J.W. Tukey, who in
turn had beenprodded by R.L. Garwin of IBM Yorktown Heights Researt
Center. Retrospectively, we now know that a few clever indivuals had inde-
pently discovered,and in somecaseimplemented, FFT asmany as20 years
previously.

One of the earliest "discoveries" of the FFT, that of Danielsonand Lanc-
zosin 1942, still provides one of the clearest derivations of the algorithm.
Danielson and Lanczosshowed that a discrete Fourier transform of length
N can be rewritten asthe sum of two discrete Fourier transforms, ead of
length N/2. One of the two is formed from the odd-numbered points. The
proof is simply this :

X 1 ij k
Fe = e N fj (C.1)
j=0

Yrom [18]
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N1 %( 1
L 2j ., 2j +1
— e? IkN_]ij + e? ik i3 f2j+1 (C.2)
=0 =0
Nj( 1 2 i) Nj( 1 2 i)
= e 7 fy+ WK e 7 fyun (C.3)
j=0 j=0
— k
= FS+ WKF? (C.4)

In the last time, W is the samecomplex constart asin eq. 2.10, F¢ denotes
the k' componert of the Fourier transform of length N/2 formed from the
evencomponerts of the original f;'s, while F? is the corresponding transform
of length N/2 formed from the odd componerts. Notice alsothat k in the
line C.4 varies from 0 to N, not just to N/2. Nevertheless,the transforms
F¢ and F? are periodic in k with length N/2. So ead is repeated through
two cyclesto obtain Fy.

The wonderful thing about the Danielson-LanczosLemmaiis that it can
be usedrecursively. Having reducedthe problem of computing Fy to that of
computing F¢ and K2, we can do the samereduction of F¢ to the problem
of computing the transform of its N/4 even-numbered input data and N/4
odd-numbered data. In other words, we can de ne F® anf F° to be the
discrete Fourier transforms of the points which are respectively even-ewen
and even-odd on the successie subdivisions of the data.

Although there are ways of treating other cases,by far the easiestcase
is the one in which the original N is an integer power of 2. In fact, we
categorically recommendthat you only use FFTs with N a power two. If
the length of your data set is not a power of two, pad it wth zerosup to
the next power of two. With this restriction on N, it is evidert that we can
continue applying the Danielson-LanczosLemma until we have subdivided
the data all the way down to transforms of length 1. What is the Fourier
transform of length one? It is just the identit y operation that copiesits one
input number into its one output slot! In other words, for every pattern if
e'sand o's (numbering logpN in all), there is a one-point transform that is
just one oj the input number f

[ goeeoeoiioee= £ - f or somen (C.5)

(Of coursethis one-point transform actually doesnot depend on k, sinceit
is periodic in k with period 1.)

The next trick isto gure out which value of n correspondsto which pat-
tern of e'sand o'sin equation C.5. The answer is : reversethe pattern of e's
and o's, then let e=0 and o=1, and you will have, in binary, the value of n.
Do you seewhy it works? It is becausethe successie subdivision of the data
into even and odd are tests of successie low-order (least signi cant) bits of
n. This idea of bit reversal can be exploited in a very clever way which,
aling with the Danielson-LanczosLemma, makes FFTs practical: suppose
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Figure C.1: Reordering an array (here of length 8) by bit reversal, (a) between
two arrays, versus(b) in place. Bit reversal reordering is a necessarypart of the
Fast Fourier Transform (FFT) algotithm

we take the original vector of data f; and rearrangeit into bit-reversedorder
(see g. C.1), sothat the individual numbersarein the order not of j, but of
the number obtained by bit-reversingj. Then the bookkeepingon the recur-
sive application of the Danielson-LanczosLemma becomesextraordinarily
simple. The points as given are the one-point transform. Each combination
takesof order N operations, and there are evidertly logoN combinations, so
the whole algorithm is of order NlogpN (assuming, asit is the case,that
the processof sorting into bit-reversed order is no greater in order than
NlogpN).

This, then, is the structure of a FFT algorithm: It has two sectiond.
The rst section sorts the data into bit-reversedorder . Muckily this takes
no additional storage, sinceit involvesonly swappong paits of elemers.(If
ki is the bit reverse of k,, then k2 is the bit reverseof k;.) The second
section has an outer loop which is executeslogpN times and calculated, in
turn, transforms of length 2,4,8,...,N. For eat stage of this process,two
nestedinner loops range over the subtransforms already computed and the
elemerns of ead transform, implementing the Danielson-LanczosLemma.
The operation is made more e cien t by restricting calls for trigonometric
sinesand cosinesto the outer loop, where they are made only logpN times.
Computation of the sinesand cosinesof multiple anglesis trough simple
recurrencerelations in the inner loops.
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